Purification of aqeous media by magnetically operated saponite sorbents

Authors

  • Наталія Олександрівна Михайленко National Technical University of Ukraine “Kyiv Polytechnic Institute” 37 Peremohy ave., Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0003-1713-7962
  • Оксана Володимирівна Макарчук National Technical University of Ukraine "Kyiv Polytechnic Institute" 37 Peremohy ave., Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-9264-2443
  • Тетяна Анатоліївна Донцова National Technical University of Ukraine "Kyiv Polytechnic Institute" 37 Peremohy ave., Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0003-4275-9923
  • Світлана Василівна Горобець National Technical University of Ukraine “Kyiv Polytechnic Institute” 37 Peremohy ave., Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-5328-2959
  • Ігор Михайлович Астрелін National Technical University of Ukraine "Kyiv Polytechnic Institute" 37 Peremohy ave., Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-8775-2744

DOI:

https://doi.org/10.15587/1729-4061.2015.46573

Keywords:

сапоніт, магнітокерований сорбент, адсорбція, барвники, магнітна сепарація

Abstract

Composite magnetically operated sorbents based on saponite and magnetite (containing from 3 to 10 % wt.) were synthesized, and their phase and chemical composition was revealed. Their adsorption properties with respect to the dyes were investigated and it is shown that magnetically operated sorbents have a high sorption capacity (maximum sorption capacity qt by malachite green reaches 324,50 mg/g), which is significantly higher than in their separate phases - native saponite (105.71 mg/g) and magnetite (36.71 mg/g). The calculated parameters of the equation of the Langmuir adsorption isotherm indicate that sorbent shows greater selectivity with respect to the cationic type dyes. It was found that sorption of dyes on magnetically operated sorbents proceeded at a higher rate compared to saponin. When removing spent sorbents from water by magnetic separation, it was revealed that effective removal of magnetically operated sorbents from the working medium is possible with nozzles in the form of nickel-plated steel grids. It is shown that using magnetically operated sorbents and high-gradient magnetic separators allows to purify working media from dyes with high efficiency, up to 90-96%, therefore, using magnetic separators with high-gradient magnetic nozzles in the form of nickel-plated grids with desired technological parameters of magnetic separation process that take into account the magnetic properties of a particular sorbent type is recommended.

Author Biographies

Наталія Олександрівна Михайленко, National Technical University of Ukraine “Kyiv Polytechnic Institute” 37 Peremohy ave., Kyiv, Ukraine, 03056

Engineer

Department of bioinformatics

Оксана Володимирівна Макарчук, National Technical University of Ukraine "Kyiv Polytechnic Institute" 37 Peremohy ave., Kyiv, Ukraine, 03056

Department of Inorganic Materials Technology and General Chemical Technology

Тетяна Анатоліївна Донцова, National Technical University of Ukraine "Kyiv Polytechnic Institute" 37 Peremohy ave., Kyiv, Ukraine, 03056

PhD, Associate Professor

Department of Inorganic Materials Technology and General Chemical Technology

Світлана Василівна Горобець, National Technical University of Ukraine “Kyiv Polytechnic Institute” 37 Peremohy ave., Kyiv, Ukraine, 03056

Professor, Doctor of technical sciences, head of the department

The department of bioinformatics

Ігор Михайлович Астрелін, National Technical University of Ukraine "Kyiv Polytechnic Institute" 37 Peremohy ave., Kyiv, Ukraine, 03056

Doctor of Technical Sciences, Professor

Department of Inorganic Materials Technology and General Chemical Technology

References

  1. Zhang, L., Fang, M. (2010). Nanomaterials in pollution trace detection and environmental improvement. Nano Today, 5 (2), 128–142. doi: 10.1016/j.nantod.2010.03.002
  2. Spivak, V. V. (2013). Sorption of pollutants of various genesis by natural and modified saponite clays. Кiev, 26.
  3. Iram, M., Guo, C., Guan, Y., Ishfaq, A., Liu, H. (2010). Adsorption and magnetic removal of neutral red dye from aqueous solution using Fe3O4 hollow nanospheres. Journal of Hazardous Materials, 181 (1-3), 1039–1050. doi: 10.1016/j.jhazmat.2010.05.119
  4. Shuang, C., Li, P., Li, A., Zhou, Q., Zhang, M., Zhou, Y. (2012). Quaternized magnetic microspheres for the efficient removal of reactive dyes. Water Research, 46 (14), 4417–4426. doi: 10.1016/j.watres.2012.05.052
  5. Pearce, C. (2003). The removal of colour from textile wastewater using whole bacterial cells: a review. Dyes and Pigments, 58 (3), 179–196. doi: 10.1016/s0143-7208(03)00064-0
  6. Lee, J.-W., Choi, S.-P., Thiruvenkatachari, R., Shim, W.-G., Moon, H. (2006). Evaluation of the performance of adsorption and coagulation processes for the maximum removal of reactive dyes. Dyes and Pigments, 69 (3), 196–203. doi: 10.1016/j.dyepig.2005.03.008
  7. Wawrzkiewicz, M. (2012). Anion Exchange Resins as Effective Sorbents for Acidic Dye Removal from Aqueous Solutions and Wastewaters. Solvent Extraction and Ion Exchange, 30 (5), 507–523. doi: 10.1080/07366299.2011.639253
  8. Crini, G. (2003). Studies on adsorption of dyes on beta-cyclodextrin polymer. Bioresource Technology, 90 (2), 193–198. doi: 10.1016/s0960-8524(03)00111-1
  9. Srinivasan, R. (2011). Advances in Application of Natural Clay and Its Composites in Removal of Biological, Organic, and Inorganic Contaminants from Drinking Water. Advances in Materials Science and Engineering, 2011, 1–17. doi: 10.1155/2011/872531
  10. Sanchez-Martin, M. J., Rodriguez-Cruz, M. S., Andrades, M. S., Sanchez-Camazano, M. (2006). Efficiency of different clay minerals modified with a cationic surfactant in the adsorption of pesticides: Influence of clay type and pesticide hydrophobicity. Applied Clay Science, 31 (3-4), 216–228. doi: 10.1016/j.clay.2005.07.008
  11. Rytwo, G., Kohavi, Y., Botnick, I., Gonen, Y. (2007). Use of CV- and TPP-montmorillonite for the removal of priority pollutants from water. Applied Clay Science, 36 (1-3), 182–190. doi: 10.1016/j.clay.2006.04.016
  12. Senturk, H. B., Ozdes, D., Gundogdu, A., Duran, C., Soylak, M. (2009). Removal of phenol from aqueous solutions by adsorption onto organomodified Tirebolu bentonite: Equilibrium, kinetic and thermodynamic study. Journal of Hazardous Materials, 172 (1), 353–362. doi: 10.1016/j.jhazmat.2009.07.019
  13. Borisover, M., Graber, E. R., Bercovich, F., Gerstl, Z. (2001). Suitability of dye–clay complexes for removal of non-ionic organic compounds from aqueous solutions. Chemosphere, 44 (5), 1033–1040. doi: 10.1016/s0045-6535(00)00337-4
  14. Churchman, G. J. (2002). Formation of complex between bentonite and different cationic polyelectrolytes and their use as sorbents for non-ionic and anionic pollutants. Appl. Clay Science, 21, 177–189. doi: 10.1016/s0169-1317(01)00099-0
  15. Makarchuk, O. V., Spivak, V. V. (2014). Magnitokerovanyi sorbent na mineralniy osnovi. Patent Ukrainy na korysnu model 91147, 12, 4.
  16. Parfit, G., Rochester, K. (1986). Adsorbtsiya iz rastvorov na poverkhnostyah tverdykh tel. Мoscow: Мir, 490.
  17. Frolov, Yu. G. (1982). Kurs kolloidnoi khimii. Poverkhnostnyie yavleniya I dispersnyie sistemy. Мoscow: Khimiia, 400.
  18. Shluger, M. A. (1985). Galvanicheskiie pokrytiya v mashinostroienii. In 2 volumes. Vol. 1. Мoscow: Маshinostroienie, 240.
  19. Gorobets, S. V., Mykhailenko, N. A. (2014). Vysokogradientnyie ferromagnitnyie nasadki dlya ochistki stochnykh vod, polychenyie metodom magnitoelektroliza. Khimiia I tekhnologia vody, 36 (4(240)), 283–296.
  20. Worl, L., Devlin, D., Hill, D., Padilla, D., Prenger, C. (1999). Experiments aim to extend the limits of magnetic separation. The Actinide Research Quarterly, Nuclear Materials Research and Technology. Los Alamos National Laboratory, 1–3.
  21. Gorobets, S. V. (1991). Zavisimost effektivnosti koagulyatsii ferromagnitnykh I neferromagnitnykh primesey v magnitnom pole ot parametrov filtrov, rabochikh zhidkostey I primesnykh chastits. Izvestiya VUZov. Mashinostroienie, 1-3, 133–137.
  22. Gorobets, S. V., Gorobets, O. Yu. (2003). Optimizatsiya funktsionalnykh parametrov vysokogradientnykh ferromagnitnykh nasadok magnitnykh filtrov dlya ochistki zhidkikh sred. Khimiia I tekhnologiia vody, 6.

Published

2015-08-19

How to Cite

Михайленко, Н. О., Макарчук, О. В., Донцова, Т. А., Горобець, С. В., & Астрелін, І. М. (2015). Purification of aqeous media by magnetically operated saponite sorbents. Eastern-European Journal of Enterprise Technologies, 4(10(76), 13–20. https://doi.org/10.15587/1729-4061.2015.46573