Application of the interferometric approach for the optical tomography of stationary torch

Authors

DOI:

https://doi.org/10.15587/1729-4061.2015.47156

Keywords:

speckle-interferometry, optically-dense flame, refractive index, temperature distribution, optical tomography

Abstract

Knowledge on the internal structure of the flame is very important for the study and optimization of the combustion processes. The direct flame probing involves great difficulties because of the usually aggressive nature of the environment studied and due to inevitable perturbation of combustion processes by probing devices. Efficient alternatives are supplied by non-contact optical methods in which the flame structure can be recovered via the spatial distribution of the radiation passed through the flame. In this situation, the phase distribution of the transmitted radiation is especially informative, in particular, for an optically dense (not fully transparent to its own radiation) flame. The paper describes a speckle-interferometry technique for registration of the probe radiation phase and related approaches to extracting information on the spatial inhomogeneity of the torch. Application of the high-speed single-frame measurement techniques and special handling tomographic procedures enable to determine the spatial and temporal distribution of the refractive index in the combustion zone on which basis it is possible to identify the structure of the flame. As an example, results of a study of the stationary combustion of the medical paraffin droplets are presented. The data obtained can be used for increase of the combustion efficiency and reduction of fuel consumption.

Author Biographies

Андрей Юрьевич Попов, Odessa I. I. Mechnikov National University Dvorianska 2, Odessa, Ukraine, 65082

Candidate of Physical and Mathematical Sciences, Senior Researcher, Head of Laboratory

Laboratory of applied physics and computer technologies

Research Institute of Physics

Александр Валентинович Тюрин, Odessa I. I. Mechnikov National University Dvorianska 2, Odessa, Ukraine, 65082

Doctor of Physical and Mathematical Sciences, Professor, Head of Department

Department of economical cybernetics and information technologies

Владимир Григорьевич Ткаченко, Odessa I. I. Mechnikov National University Dvorianska 2, Odessa, Ukraine, 65082

Candidate of Physical and Mathematical Sciences, Senior Researcher

Research Institute of Physics

Александр Янович Бекшаев, Odessa I. I. Mechnikov National University Dvorianska 2, Odessa, Ukraine, 65082

Doctor of Physical and Mathematical Sciences, Senior Researcher, Head of Laboratory

Laboratory of optics and laser physics

Research Institute of Physics

Валерий Владимирович Калинчак, Odessa I. I. Mechnikov National University Dvorianska 2, Odessa, Ukraine, 65082

Doctor of Physical and Mathematical Sciences, Professor, Head of Department

Department of thermophysics

Михаил Юрьевич Трофименко, Odessa I. I. Mechnikov National University Dvorianska 2, Odessa, Ukraine, 65082

Candidate of Physical and Mathematical Sciences, Senior Researcher

Department of thermophysics

References

  1. Trofimenko, M. Yu., Trofimenko, M. Y., Aslanov, S. K., Smolyar, V. P. (2014, May). Electrical structure of the jet of a gas mixture flame. Surface Engineering and Applied Electrochemistry, Vol. 50, № 3, 275–279. doi:10.3103/s1068375514030089
  2. Trofimenko, M. Yu., Aslanov, S. K., Smolyar, V. P. (2014). Structural changes in the gas flame upon the pulsating combustion mode onset. Ukrainian Journal of Physics, Vol. 59, № 4, 359–364.
  3. Svet, Ya. D. (1982). Opticheskie metody izmerenia istinnyh temperatur. М.: Nauka, 296.
  4. Trofimenko, M. Yu. (1995). Issledovanie gorenia tverdyh smesevyh system opticheskimi metodami. 21-y Mezhdunarodnyi pirotehnicheskiy seminar (Moscow, Russia, 11-15 Septenber 1995), 884–890.
  5. Thorne, A. P. (1988). Spectrophysics. London/N.Y.: Chapman and Hall, 390. doi:10.1007/978-94-009-1193-2
  6. Ostrovskaya, G. V. (2008). Holographic diagnostics of the plasma. Journ. Tech. Phys., Vol. 78, № 9, 1–28.
  7. Florko, A. V., Shevchuk, V. G. (2006). Spektral’nye metody issledovania vysokotemperaturnyh sistem. Odessa: ONU, 146.
  8. Francon, M.; Ostrovskiy, Yu. I. (1980). Optika speklov. Translation from French. M.: Mir, 171.
  9. Løkberg, O. J. (1987). Electronic speckle pattern interferometry. Optical Metrology. Springer Netherlands, 542–572. doi:10.1007/978-94-009-3609-6_36
  10. Yang, L., Ettemeyer, A. (2003). Strain measurement by three-dimensional electronic speckle pattern interferometry: potentials, limitations, and applications. Optical Engineering, Vol. 42, № 5, 1257–1266. doi:10.1117/1.1566781
  11. Tyrer, J. R. (1997). Electronic speckle pattern interferometry. Optical measurement methods in biomechanics. Springer US, 99–124. doi:10.1007/978-0-585-35228-2_6
  12. Popov, A. Yu., Tyurin, A. V., Bekshaev, A. Ya., Gotsulsky, V. Ya.; assignee: Odessa I. I. Mechnikov National University. (25.02.2014). Sposib shvydkisnoho vymiriuvannia zminy fazy obyektnoi hvyli metodom fazomoduliovanoi spekl-interferometrii. Patent of Ukraine № 105297. Appl. № а2012 15004. Filed 27.12.2012. Bul. № 4, 4.
  13. Warnatz, J., Maas, U., Dibble, R. W. (2001). Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation. Springer, 351.

Published

2015-08-22

How to Cite

Попов, А. Ю., Тюрин, А. В., Ткаченко, В. Г., Бекшаев, А. Я., Калинчак, В. В., & Трофименко, М. Ю. (2015). Application of the interferometric approach for the optical tomography of stationary torch. Eastern-European Journal of Enterprise Technologies, 4(5(76), 8–12. https://doi.org/10.15587/1729-4061.2015.47156