Role of boron in formation of secondary radiation defects in silicon

Authors

DOI:

https://doi.org/10.15587/1729-4061.2015.47224

Keywords:

silicon, boron-dopant, radiation defects and complexes

Abstract

Influence of boron impurities on electron-transport in crystalline silicon is well known because p-Si – basic semiconducting material of the modern microelectronics – usually is obtained by doping with B. It is too important to understand the mechanism interaction of B dopants with radiation defects in silicon to (i) develop effective radiation treatment technologies for electronic devices and integrated circuits, (ii) improve their radiation resistance, and (iii) design effective solid-state radiation sensors and detectors.

Based on authors’ previous works the role of B-impurities in formation of secondary radiation defects in Si crystals is investigated. Dependences of these processes on isochronous annealing temperature (80–600 °C) are studied by using the Hall measurements of temperature-dependencies (100–300 K) of holes’ concentration and mobility in silicon before and after irradiation with 8 MeV electrons at the dose of 5∙1015 cm–2. Two main conclusions are made: boron atoms in silicon crystals (i) serve as extremely active sinks of radiation defects, and (ii) participate in space-charge-screening of the relatively high-conductive inclusions in form of clusters of radiation defects.

Author Biographies

Temur Pagava, Georgian Technical University Kostava 77, Tbilisi, Georgia, 0175

Professor, Doctor of Physical-Mathematical Sciences

Department of Engineering Physics

Levan Chkhartishvili, Georgian Technical University Kostava Ave. 77, Tbilisi, Georgia, 0175

Doctor of Physical-Mathematical Sciences, Professor

Department of Engineering Physics

Nodar Maisuradze, Georgian Technical University Kostava 77, Tbilisi, Georgia, 0175

Associate Professor, Candidate of Physical-Mathematical Sciences

Department of Engineering Physics

Ramaz Esiava, Georgian Technical University Kostava 77, Tbilisi, Georgia, 0175

Assistant Professor, Candidate of Technical Sciences

Department of Engineering Physics

Shorena Dekanosidze, Georgian Technical University Kostava 77, Tbilisi, Georgia, 0175

Assistant Professor, Candidate of Technical Sciences

Department of Engineering Physics

Manana Beridze, Georgian Technical University Kostava 77, Tbilisi, Georgia, 0175

Senior Lecturer, Doctor of Philosophy in Engineering Physics

Department of Engineering Physics

Nana Mamisashvili, Georgian Technical University Kostava 77, Tbilisi, Georgia, 0175

Assistant Professor, Candidate of Technical Sciences

Department of Engineering Physics

References

  1. Rumyantsev, V. V., Morozov, S. V., Kudryavtsev, K. E., Gavrilenko, V. I., Kozlov, D. V. (2012, November). Features of impurity-photoconductivity relaxation in boron-doped silicon. Semiconductors, Vol. 46, № 11, 1387–1391. doi:10.1134/s1063782612110188
  2. Gasseller, M., DeNinno, M., Loo, R., Harrison, J. F., Caymax, M., Rogge, S., Tessmer, S. H. (2011, December 14). Single-Electron Capacitance Spectroscopy of Individual Dopants in Silicon. Nano Letters, Vol. 11, № 12, 5208–5212. doi:10.1021/nl2025163
  3. Poklonskii, N. A., Syaglo, A. I. (1999, April). Electrostatic model of the energy gap between Hubbard bands for boron atoms in silicon. Semiconductors, Vol. 33, № 4, 391–393. doi:10.1134/1.1187700
  4. Bagraev, N. T., Klyachkin, L. E., Kuzmin, R. V., Malyarenko, A. M., Mashkov, V. A. (2012, March). Infrared luminescence from silicon nanostructures heavily doped with boron. Semiconductors, Vol. 46, № 3, 275–288. doi:10.1134/s1063782612030049
  5. Hwang, G. S., Goddard, W. A. (2002, July). Diffusion of the Diboron Pair in Silicon. Physical Review Letters, Vol. 89, № 5. Available: http://doi.org/10.1103/physrevlett.89.055901
  6. Obodnikov, V. I., Tishkovskii, E. G. (1998, April). Influence of the initial boron doping level on the boron atom distribution arising as a result of heat treatment in silicon implanted with boron ions. Semiconductors, Vol. 32, № 4, 372–374. doi:10.1134/1.1187398
  7. Feklistov, K. V., Fedina, L. I., Cherkov, A. G. (2010, March). Precipitation of boron in silicon on high-dose implantation. Semiconductors, Vol. 44, № 3, 285–288. doi:10.1134/s1063782610030024
  8. Feklisova, O. V., Yarykin, N. A., Weber, J. (2013, February). Annealing kinetics of boron-containing centers in electron-irradiated silicon. Semiconductors, Vol. 47, № 2, 228–231.doi:10.1134/s1063782613020085
  9. Khirunenko, L. I., Pomozov, Y. V., Sosnin, M. G. (2013, February). Optical properties of silicon with a high content of boron. Semiconductors, Vol. 47, № 2, 269–274. doi:10.1134/s1063782613020127
  10. Yang, D., Wang, P., Yu, X., Que, D. (2013, January). Germanium-doped crystalline silicon: A new substrate for photovoltaic application. Journal of Crystal Growth, Vol. 362, 140–144. doi:10.1016/j.jcrysgro.2011.11.088
  11. Tishkovskii, E. G., Obodnikov, V. I., Taskin, A. A., Feklistov, K. V., Seryapin, V. G. (2000, June). Redistribution of phosphorus implanted into silicon doped heavily with boron. Semiconductors, Vol. 34, № 6, 629–633. doi:10.1134/1.1188043
  12. Fadila, L., Abdelkader, B., Jamaldine, S., Yahia, B., Larbi, Ch., Ana, A. (2011). Density of States in Intrinsic and n/p-Doped Hydrogenated Amorphous and Microcrystalline Silicon. Journal of Modern Physics, Vol. 02, № 09, 1030–1036. doi:10.4236/jmp.2011.29124
  13. Kozlov, A. M., Ryl’kov, V. V. (1997, July). Frenkel’-Poole effect for boron impurity in silicon in strong warming electric fields. Semiconductors, Vol. 31, № 7, 658–660.doi:10.1134/1.1187059
  14. Sobolev, N. A., Loshachenko, A. S., Poloskin, D. S., Shek, E. I. (2013, February). Electrically active centers formed in silicon during the high-temperature diffusion of boron and aluminum. Semiconductors, Vol. 47, № 2, 289–291. doi:10.1134/s106378261302019x
  15. Yunusov, M. S. (1997, June). Features of radiation-induced defect formation in p-type Si〈B,Pt〉. Semiconductors, Vol. 31, № 6, 618. doi:10.1134/1.1187228
  16. Yunusov, M. S., Karimov, M., Oksengendler, B. L. (1998, March). On the mechanisms of long-term relaxation of the conductivity in compensated Si〈B,S〉 and Si〈B,Rh〉 as a result of irradiation. Semiconductors, Vol. 32, № 3, 238–240. doi:10.1134/1.1187387
  17. Smirnova, I. V., Shilova, O. A., Moshnikov, V. A., Gamarts, A. E. (2009, October). Features of simultaneous diffusion of boron and gadolinium in silicon from nanoscale hybrid organic-inorganic films. Semiconductors, Vol. 43, № 10, 1394–1399. doi:10.1134/s1063782609100248
  18. Aleksandrov, O. V., Kozlovski, V. V. (2008, March). Simulation of near-surface proton-stimulated diffusion of boron in silicon. Semiconductors, Vol. 42, № 3, 257–262. doi:10.1134/s1063782608030020
  19. Chkhartishvili, L., Pagava, T. (2013). Apparent Hall mobility of charge carriers in silicon with nano-sized “metallic” inclusions. Nano Studies, № 8, 85‑94.
  20. Kozlovskii, V. V., Kozlov, V. A., Lomasov, V. N. (2000, February). Modification of semiconductors with proton beams. A review. Semiconductors, Vol. 34, № 2, 123–140. doi:10.1134/1.1187921
  21. Pagava, T. A. (2004, June). A study of recombination centers in irradiated p-Si crystals. Semiconductors, Vol. 38, № 6, 639–643. doi:10.1134/1.1766363
  22. Pagava, T. A., Basheleishvili, Z. V. (2003, September). Migration energy of vacancies in p-type silicon crystals. Semiconductors, Vol. 37, № 9, 1033–1036. doi:10.1134/1.1610113
  23. Adey, J., Jones, R., Palmer, D. W., Briddon, P. R., Öberg, S. (2005, April). Theory of boron-vacancy complexes in silicon. Physical Review B, Vol. 71, № 16. Available: http://doi.org/10.1103/physrevb.71.165211
  24. Pagava, T., Chkhartishvili, L. (2013). Quasi-chemical reactions in irradiated silicon. European Chemical Bulletin, Vol. 2, 10, 785‑793.
  25. Pagava, T., Chkhartishvili, L., Maisuradze, N. (2006). Concentrations of radiation defects with almost isoenergetical levels in silicon. Radiation Effects and Defects in Solids, Vol. 161, № 12, 709–713. doi:10.1080/10420150600966075
  26. Pagava, T., Chkhartishvili, L. (2009, October). Impurities’ influence on complex defects annealing: divacancies in silicon. Radiation Effects and Defects in Solids, Vol. 164, № 10, 639–646. doi:10.1080/10420150903092264
  27. Pagava, T. A., Chkhartishvili, L. S., Maisuradze, N. I., Kutelia, E. R. (2007). Conversion of divacancies at isochronous annealing of irradiated p‑Si crystals. Ukrainian Journal of Physics, Vol. 52, № 12, 1162–1164.
  28. Pagava, T. A., Khocholava, D. Z., Maisuradze, N. I., Chkhartishvili, L. S. (2012). Study of recombination and electric properties of p‑Si crystals irradiated with electrons. Ukrainian Journal of Physics, Vol. 57, № 5, 525‑530.
  29. Kalinushkin, V. P., Buzynin, A. N., Murin, D. I., Yuryev, V. A., Astaf’ev, O. V. (1997, October). Application of elastic mid-infrared light scattering to the investigation of internal gettering in Czochralski-grown silicon. Semiconductors, Vol. 31, № 10, 994–998. doi:10.1134/1.1187034
  30. Stas’, V. F., Antonova, I. V., Neustroev, E. P., Popov, V. P., Smirnov, L. S. (2000, February). Thermal acceptors in irradiated silicon. Semiconductors, Vol. 34, № 2, 155–160. doi:10.1134/1.1187925
  31. Kurmaev, E. Z., Shamin, S. N., Galakhov, V. R., Makhnev, A. A., Kirillova, M. M., Kurennykh, T. E., Vykhodets, V. B., Kaschieva, S. (1997, August 11). The influence of high-energy electron irradiation and boron implantation on the oxide thickness in the /Si system. Journal of Physics: Condensed Matter, Vol. 9, № 32, 6969–6978. doi:10.1088/0953-8984/9/32/018
  32. Stefanov, K., Kaschieva, S., Karpuzov, D. (1998, October). Electrical characterization of defects induced by 12 MeV electrons in p—type Si-SiO2 structures. Vacuum, Vol. 51, № 2, 235–237. doi:10.1016/s0042-207x(98)00166-3
  33. Kaschieva, S., Alexandrova, S. (2001, April). High energy electron irradiation of ion implanted MOS structures with different oxide thickness. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 174, № 3, 324–328. doi:10.1016/s0168-583x(00)00522-x
  34. Kaschieva, S., Alexandrova, S. (2002, September). Effect of low dose γ-radiation on the annealing temperature of radiation defects in ion implanted MOS structures. Materials Science and Engineering: B, Vol. 95, № 3, 295–298. doi:10.1016/s0921-5107(02)00290-8
  35. Kaschieva, S., Dmitriev, S. N., Angelov, C. (2003, May). Electron and γ-irradiation of ion implanted MOS structures with different oxide thickness. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 206, 452–456. doi:10.1016/s0168-583x(03)00792-4
  36. Kaschieva, S., Todorova, Z., Dmitriev, S. N. (2004, November). Radiation defects induced by 20MeV electrons in MOS structures. Vacuum, Vol. 76, № 2-3, 307–310. doi:10.1016/j.vacuum.2004.07.034
  37. Kaschieva, S., Dmitriev, S. N., Skorupa, W. (2004, March 1). Reduction of the annealing temperature of radiation-induced defects in ion-implanted MOS structures. Applied Physics A: Materials Science & Processing, Vol. 78, № 4, 607–610. doi:10.1007/s00339-003-2214-5
  38. Vavilov, V. S., Kiselev, V. F., Mukashev, B. N. (1990). Defects in Silicon and on Its Surfaces. Moscow: Nauka, 211.
  39. Lugakov, P. F., Lukashevich, T. A. (1984, October 16). Formation and Parameters of Boron-Divacancy Complexes in Irradiated p-Si. Physica Status Solidi (a), Vol. 85, № 2, 441–444. doi:10.1002/pssa.2210850214
  40. Pagava, T. A., Maisuradze, N. I. (2010, February). Anomalous scattering of electrons in n-Si crystals irradiated with protons. Semiconductors, Vol. 44, № 2, 151–154. doi:10.1134/s1063782610020041
  41. Pagava, T. A., Maisuradze, N. I., Beridze, M. G. (2011, May). Effect of a high-energy proton-irradiation dose on the electron mobility in n-Si crystals. Semiconductors, Vol. 45, № 5, 572–576. doi:10.1134/s106378261105023x
  42. Kuchis, E. V. (1990). Galvanomagnetic Effects and Methods of Their Investigation. Moscow: Radio and Communications, 264.
  43. Aseev, A. L., Fedina, L. I., Höehl, D., Barsch, H. (1994). Clusters of Interstitial Atoms in Silicon and Germanium. Berlin: Akademie, 152.

Downloads

Published

2015-08-22

How to Cite

Pagava, T., Chkhartishvili, L., Maisuradze, N., Esiava, R., Dekanosidze, S., Beridze, M., & Mamisashvili, N. (2015). Role of boron in formation of secondary radiation defects in silicon. Eastern-European Journal of Enterprise Technologies, 4(5(76), 52–58. https://doi.org/10.15587/1729-4061.2015.47224