Removal of chromium(VI) and uranium(VI) from aqueous solutions by the immobilized nanoscale Fe0

Authors

  • Вікторія Юріївна Тобілко National Technical University of Ukraine «Kyiv Polytechnic Institute» 37 Peremogy ave., Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-1800-948X
  • Олександр Лаврович Маковецкий National Technical University of Ukraine «Kyiv Polytechnic Institute» 37 Peremogy ave., Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0001-9560-4453
  • Ірина Андріївна Ковальчук Institute of Sorption and Problems of NAS Endoecology 13 General Naumov str., Kyiv, Ukraine, 03164, Ukraine https://orcid.org/0000-0002-7019-6534
  • Борис Юрійович Корнілович National Technical University of Ukraine «Kyiv Polytechnic Institute» 37 Peremogy ave., Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-6393-6880

DOI:

https://doi.org/10.15587/1729-4061.2015.48885

Keywords:

immobilized nanoscale Fe0, sorption capacity, chromium(VI) and uranium(VI) compounds, electrosurface properties

Abstract

Using the macro-electrophoresis method, electrosurface properties of the synthesized composite sorbents were experimentally determined. It was found that their surface has a mosaic structure that contains functional groups, different in chemical behavior, causing the sorption properties.

The physicochemical characteristics of the processes of water purification from chromium(VI) and uranium(VI) compounds using sorption-reduction materials based on the nanoscale Fe0 and clay minerals were investigated. It was found that the composite sorbents exhibit a high sorption capacity with respect to heavy metals in the anionic form. The removal efficiency of chromium and uranium from water is significantly affected by the pH of the aqueous medium and the content of the immobilized nanoscale Fe0 in the composite. The possibility of using highly dispersed sorbents in deep water purification from heavy metal ions was shown.

Author Biographies

Вікторія Юріївна Тобілко, National Technical University of Ukraine «Kyiv Polytechnic Institute» 37 Peremogy ave., Kyiv, Ukraine, 03056

Assistant

Department of chemical technology of ceramics and glass

Олександр Лаврович Маковецкий, National Technical University of Ukraine «Kyiv Polytechnic Institute» 37 Peremogy ave., Kyiv, Ukraine, 03056

PhD, Senior Engineer

Department of chemical technology of ceramics and glass

Ірина Андріївна Ковальчук, Institute of Sorption and Problems of NAS Endoecology 13 General Naumov str., Kyiv, Ukraine, 03164

Candidate of chemical sciences, Senior Researcher

Борис Юрійович Корнілович, National Technical University of Ukraine «Kyiv Polytechnic Institute» 37 Peremogy ave., Kyiv, Ukraine, 03056

Corresponding Member of NAS Ukraine, professor, Doctor of chemical science, head of the department

Department of chemical technology of ceramics and glass

References

  1. Kornilovych, B. Yu., Sorokin, О. G., Pavlenko, V. M., Koshyk, Yu. I. (2011). Pryrodookhoronni tekhnologii v uranovydobuvnii ta pererobnii promyslovosti. Kiev, 156.
  2. Scott, T. B., Popescu, I. C., Crane, R. A., Noubactep, C. (2011). Nano-scale metallic iron for the treatment of solutions containing multiple inorganic contaminants. Journal of Hazardous Materials, 186 (1), 280–287. doi: 10.1016/j.jhazmat.2010.10.113
  3. Fu, F., Dionysiou, D. D., Liu, H. (2014). The use of zero-valent iron for groundwater remediation and wastewater treatment: A review. Journal of Hazardous Materials, 267, 194–205. doi: 10.1016/j.jhazmat.2013.12.062
  4. Grinvud, N., Ernsho, A. (2010). Khimiya elementov: v 2 kn. Vol. 1. Мoscow: BINOM. Laboratoriia znanii, 670.
  5. Fan, M., Yuan, P., Chen, T. (2010). Synthesis, characterization and size control of zerovalent iron nanoparticles anchored on montmorillonite. Chinese Science Bulletin, 55, 1092–1099.
  6. Gu, C., Jia, H., Li, H., Teppen, B. J., Boyd, S. A. (2010). Synthesis of Highly Reactive Subnano-Sized Zero-Valent Iron Using Smectite Clay Templates. Environ. Sci. Technol., 44 (11), 4258–4263. doi: 10.1021/es903801r
  7. Shi, L., Zhang, X., Chen, Z. (2011). Removal of Chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron. Water Research, 45 (2), 886–892. doi: 10.1016/j.watres.2010.09.025
  8. Kornilovych, B. Yu., Andrievska, O. R., Plemyannikov, M. M., Spasenova, L. M. (2013). Phizychna khimiya kremnezemu i nanodyspersnyh sylikativ. Kiev: Osvita Ukrainy, 176.
  9. Li, Z., Jones, H. K., Bowman, R. S., Helferich, R. (1999). Enhanced Reduction of Chromate and PCE by Pelletized Surfactant-Modified Zeolite/Zerovalent Iron. Environmental Science & Technology, 33 (23), 4326–4330. doi: 10.1021/es990334s
  10. Pang, Z., Yan, M., Jia, X., Wang, Z., Chen, J. (2014). Debromination of decabromodiphenyl ether by organo-montmorillonite-supported nanoscale zero-valent iron: Preparation, characterization and influence factors. Journal of Environmental Sciences, 26 (2), 483–491. doi: 10.1016/s1001-0742(13)60419-2
  11. Yan, W., Herzing, A. A., Kiely, C. J., Zhang, W. (2010). Nanoscale zero-valent iron (nZVI): Aspects of the core-shell structure and reactions with inorganic species in water. Journal of Contaminant Hydrology, 118 (3-4), 96–104. doi: 10.1016/j.jconhyd.2010.09.003
  12. Cundy, A. B., Hopkinson, L., Whitby, R. L. D. (2008). Use of iron-based technologies in contaminated land and groundwater remediation: A review. Science of The Total Environment, 400 (1-3), 42–51. doi: 10.1016/j.scitotenv.2008.07.002
  13. Li, X., Elliott, D. W., Zhang, W. (2006). Zero-Valent Iron Nanoparticles for Abatement of Environmental Pollutants: Materials and Engineering Aspects. Critical Reviews in Solid State and Materials Sciences, 31 (4), 111–122. doi: 10.1080/10408430601057611
  14. Shi, L., Lin, Y.-M., Zhang, X., Chen, Z. (2011). Synthesis, characterization and kinetics of bentonite supported nZVI for the removal of Cr(VI) from aqueous solution. Chemical Engineering Journal, 171 (2), 612–617. doi: 10.1016/j.cej.2011.04.038
  15. Schwertman, U., Cornell, R. M. (2000). Iron Oxides in the Laboratory. WILEY-VCH Verlag GmbH, D-69469 Weinheim (Federal Republic of Germany), 188.
  16. Baranov, V. I., Bibik, E. E., Kozhevnikova, N. M. (1983). Praktikum po kollosdnoi khimiyi. Мoscow: Vysshaia shkola, 100.
  17. Mchedlov-Petrosian, M. O., Lebid, V. I., Glazkova O. M., Lebid, O. V. (2010). Kolloiidna khimiya. Kharkiv: KhNU im. V. N. Karazina, 500.
  18. Lur̕e, Yu. Yu. (1989). Analitichesksya khimiya promyshlennyh vod. Мoscow: Khimiya, 448.
  19. Sondi, I., Pravdic, V. (2002). Electrokinetic investigations of clay mineral particles. In Interfacial electrokinetics and electrophoresis. Marcel Dekker, Inc., New York, 773–797.
  20. Sun, Y.-P., Li, X., Cao, J., Zhang, W., Wang, H. P. (2006). Characterization of zero-valent iron nanoparticles. Advances in Colloid and Interface Science, 120 (1-3), 47–56. doi: 10.1016/j.cis.2006.03.001
  21. Kornilovych, B. Yu., Moraru, V. N., Ovcharenko, F. D. (1984). Elertrokineticheskie svoistva mehanicheski aktivirovannyh glinistyh mineralov. Doklady AN SSSR, 275, 3, 675–677.
  22. Shi, L., Lin, Y.-M., Zhang, X., Chen, Z. (2011). Synthesis, characterization and kinetics of bentonite supported nZVI for the removal of Cr(VI) from aqueous solution. Chemical Engineering Journal, 171 (2), 612–617. doi: 10.1016/j.cej.2011.04.038
  23. Cao, J., Zhang, W. (2006). Stabilization of chromium ore processing residue (COPR) with nanoscale iron particles. Journal of Hazardous Materials, 132 (2-3), 213–219. doi: 10.1016/j.jhazmat.2005.09.008
  24. Shin, Y., Bae, S., Lee, W. (2013). Formation of surface mediated iron colloids during U(VI) and nZVI interaction. Advances in Environmental Research, 2 (3), 167–177. doi: 10.12989/aer.2013.2.3.167

Published

2015-10-19

How to Cite

Тобілко, В. Ю., Маковецкий, О. Л., Ковальчук, І. А., & Корнілович, Б. Ю. (2015). Removal of chromium(VI) and uranium(VI) from aqueous solutions by the immobilized nanoscale Fe0. Eastern-European Journal of Enterprise Technologies, 5(10(77), 34–40. https://doi.org/10.15587/1729-4061.2015.48885