Peculiar properties of crystal-chemical stucture of spinels of the system Mg(FexCr2-x)O4 obtained through the hydroxide coprecipitation method and solid state technology

Authors

  • Анна Віталіївна Луцась Vasyl Stefanyk Precarpathian National University 57 Shevchenko str., Ivano-Frankivsk, Ukraine, 76018, Ukraine
  • Іван Петрович Яремій Vasyl Stefanyk Precarpathian National University 57 Shevchenko str., Ivano-Frankivsk, Ukraine, 76018, Ukraine
  • Микола Петрович Матківський Vasyl Stefanyk Precarpathian National University 57 Shevchenko str., Ivano-Frankivsk, Ukraine, 76018, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2015.51058

Keywords:

ferrite, spinel, crystal lattice, precipitation method, ceramic technology

Abstract

Using the coprecipitation method of metal hydroxides, magnesium ferrite-chromites of the system Mg(FexCr2-x)O4 were synthesized, and a comparative analysis of crystal-chemical parameters of the obtained samples with similar samples, made through the solid state technology was performed. The precipitation method provides high dispersion, lower sintering temperature and more even distribution of components in the sintered ferrite. It was found that in samples, synthesized through the hydroxide coprecipitation method, the value of lattice constant is greater and reversibility degree is lower compared with samples synthesized through the solid state technology. The formation of magnesium ferrite-chromites from coprecipitated hydroxides is completed at temperatures 500-700 ºC lower than with the standard solid state technology using oxides. The dimensions of the crystallites in the samples obtained through the hydroxide coprecipitation method are within 50-130 nm and are smaller than samples, obtained through the solid state technology (200-400 nm). The changes in dispersion and ionicity degree of the chemical bond, depending on the composition and synthesis method were monitored. The obtained results demonstrate the possibility of synthesis through the hydroxide precipitation of ferrites of the system Mg-Fe-Cr and allow to predict their crystal-chemical parameters.

Author Biographies

Анна Віталіївна Луцась, Vasyl Stefanyk Precarpathian National University 57 Shevchenko str., Ivano-Frankivsk, Ukraine, 76018

PhD, Associate Professor

Department of Inorganic and Physical Chemistry

Іван Петрович Яремій, Vasyl Stefanyk Precarpathian National University 57 Shevchenko str., Ivano-Frankivsk, Ukraine, 76018

Doctor of Physical and Mathematical Sciences, Professor

Department of Materials Science and new technologies

Микола Петрович Матківський, Vasyl Stefanyk Precarpathian National University 57 Shevchenko str., Ivano-Frankivsk, Ukraine, 76018

PhD, Associate Professor

Department of Inorganic and Physical Chemistry

Deputy Director

Institute of Natural Sciences

References

  1. Rabkin, L. I., Soskin, S. A., Jepshtejn, B. Sh. (1968). Ferrity. Stroenie, svojstva, tehnologija proizvodstva. Jenergija, 384.
  2. Adamenko, O.M., Lіsnjak, S. S., Nєmij, S. M. (1999). Kristalokvazіhіmіchnі doslіdzhennja prirodnih hromshpіnelіdіv ta yh peretvorennja pri nagrіvannі. Dopovіdі NAN Ukraini, 5, 150–153.
  3. Erastova, A. P., Saksonov, Ju. G. (1963) Opredelenie kationnogo raspredelenija i kislorodnogo parametra v sisteme. Ferrity i beskontaktnye jelementy. Minsk: Izd-vo ak. nauk BSSR, 163–175.
  4. Zhurakovskij, E. A., Kirichek, P. P. (1985). Jelektronnye sostojanija v ferrimagnetikah. Naukova dumka, 280.
  5. Blyasse, Zh. (1968) Kristallokhimiya ferroshpineley. Moscow: Metallurgiya, 184.
  6. Tret'jakov, Ju. D. (1967). Termodinamika ferritov. Himija, 304.
  7. Tret'jakov, Ju. D., Olejnikov, N. N., Granik, V. A. (1973). Fiziko-khimicheskie osnovy termicheskoj obrabotki ferritov. MGU, 203.
  8. Belov, K. P. (1959). Magnitnye prevrashhenija. Fizmatgiz, 260.
  9. Shhepetkin, A. A. (2004). Kristallohimicheskie osobennosti ferroshpinelej system. Neorganicheskie materialy, 40 (4), 495–497.
  10. Erastova, A. P., Saksonov, Ju. G. (1963). Issledovanie strukturnyh izmenenij v magnievyh khromitakh-ferritakh. Ferrity i beskontaktnye jelementy. Minsk: Izd-vo ak. nauk BSSR, 152–162.
  11. Shabel'skaja, N. P., Talanov, M. V., Zaharchenko, I. N. (2013). Issledovanie processov obrazovanija khromitov (). Izvestija vuzov. Khimija i khimicheskaja tekhnologija, 56 (8), 59–62.
  12. Shabel'skaja, N. P., Zaharchenko, I. N., Ul'janov, A. K. (2014). O vlijanii prirody kationa na process sinteza shpineli. Izvestija vuzov. Khimija i khimicheskaja tekhnologija, 57 (8), 23–26.
  13. Shabel'skaja, N. P., Zaharchenko, I. N., Ul'janov, A. K. (2014). O mekhanizme obrazovanija ferritov-khromitov nikelja v hode topohimicheskogo processa. Sovremennye naukoemkie tekhnologii, 3, 150–152.
  14. Uhorchuk, O. M., Uhorchuk, V. V., Karpets', M. V., Kajkan, L. S. (2015). Litiievyj feryt u roli katodu khimichnykh dzherel strumu i perspektyvy zastosuvannia zol'-hel' syntezu. Zhurnal nano- ta elektronnoi fizyky, 7 (2), 02012-1–02012-7.
  15. Rashad, M. M., El-Shaarawy, M. G., Shash, N. M., Maklad, M. H., Afifi, F. A. (2015). Controlling the composition, microstructure, electrical and magnetic properties of LiFe5O8 powders synthesized by sol gel auto-combustion method using urea as a fuel. Journal of Magnetism and Magnetic Materials, 374, 495–501. doi: 10.1016/j.jmmm.2014.08.090
  16. Ernst, F. O., Kammler, H. K., Roessler, A., Pratsinis, S. E., Stark, W. J., Ufheil, J., Novák, P. (2007). Electrochemically active flame-made nanosized spinels: LiMn2O4, Li4Ti5O12 and LiFe5O8. Materials Chemistry and Physics, 101 (2-3), 372–378. doi: 10.1016/j.matchemphys.2006.06.014
  17. Kopayev, A. V., Mokljak, V. V., Gasyuk, I. M., Yaremiy, I. P., Kozub, V. V. (2015). Structure Ordering in Mg-Zn Ferrite Nanopowders Obtained by the Method of Sol-Gel Autocombustion. SSP, 230, 114–119. doi: 10.4028/www.scientific.net/ssp.230.114
  18. Komlev A. A, Ilkhan, S. (2012). Formirovanie nanochastic zhelezo-magnievoj shpineli pri degidratacii soosazhdennyh gidroksidov magnija i zheleza. Nanosistemy: fizika, khimija, matematika, 3 (4), 114–121.
  19. Bitnieva, A. V. (2006). Ferytoutvorennia pry termoobrobtsi systemy hidroksydiv mahniiu, zaliza ta khromu. Fizyka i khimiia tverdoho tila, 7 (1), 97–101.
  20. Bitnieva, A. V., Matkivs'kyj, M. P. (2004). Syntez feryt-khromitnykh poroshkiv metodom hidrookysnoho spivosadzhennia Tez. dopov. nauk.-prakt. konf. "Pryrodnychi nauky na mezhi stolit' (do 70-richchia pryrodnycho-heohrafichnoho fakul'tetu NDPU)". Nizhyn: NDPU im. M.Hoholia, 120–121.
  21. Bitnieva, A.V., Matkivs'kyj, M. P., Yaremij, I. P. (2005). Krystalokhimichni parametry feryt-khromitiv mahniiu, oderzhanykh metodom hidrookysnoho spivosadzhennia. Voprosy khymyi y khymycheskoj tekhnolohy, 1, 80–82.
  22. Lutsas, A. V., Matkivskyj, M. P. (2009). Patent 86201 (Ukraina), MPK S01G 49/00, C01F 5/00 / Sposib oderzhannia feryt-khromitiv mahniiu shliakhom sumisnoho osadzhennia hidroksydiv. №200512223. Zaiavl. 19.12.05. Opubl. 10.04.2009. Of. biul. "Promyslova vlasnist'", № 7.
  23. Matkivskyj, M. P., Bitnieva, A. V. (2003). Termohravimetrychni doslidzhennia feryt-khromitnykh shpinelej otrymanykh metodom hidrookysnoho spivosadzhennia Tez. dopov. IKh nauk. konf. "L'vivs'ki khimichni chytannia". L'viv, F58.
  24. Pua, P.; Sjushe, Zh. P. (Ed.) (1972). Sootnoshenie mezhdu rasstojanijami anion-kation i parametrami reshetki. Himija tverdogo tela. Moscow: Metallurgija, 49–75.
  25. Reznickij, L. A. (1984). Jenergii predpochtenija kationov i obrazovanie tverdyh rastvorov shpinelej. Neorgan. Materialy, 20 (11), 1867–1869.
  26. Talanov, V. M. (1986). Jenergeticheskaja kristallohimija mnogopodreshotochnyh kristallov. Rostov-na-Donu: Izd-vo Rostovskogo un-ta, 157.
  27. Matkivs'kyj, M. P., Perkatiuk, I. J., Lisniak, S. S. (2003). Systema kharakterystychnykh mizhatomnykh vidstanej. Pomylkovist' zastosuvannia ionnykh radiusiv v krystalokhimii. Ukr. khym. Zhurnal, 69 (8), 88–94.
  28. Nikol'skij B. P. (Ed.) (1966). Obshhie svedenija. Stroenie veshhestva. Svojstva vazhnejshih veshhestv. Laboratornaja tehnika. Vol. І. Moscow: Himija, 1071.
  29. Lisnjak, S. S. (1993). Kristallokvazihimicheskij mehanizm vysokotemperaturnyh prevrashhenij na shpinelidnyh soedinenijah. Lviv, 244.
  30. Loginova, I. Ja., Tret'jakov, Ju. D.; Belov, K. P., Tret'jakov, Ju. D. (Eds.) (1971). Aktivnoe sostojanie produktov razlozhenija solej i ego vlijanie na formirovanie keramicheskoj struktury i magnitnye svojstva ferritov. Magnitnye i kristallohimicheskie issledovanija ferritov. Moscow: Izd-vo MGU, 239–271.

Published

2015-10-16

How to Cite

Луцась, А. В., Яремій, І. П., & Матківський, М. П. (2015). Peculiar properties of crystal-chemical stucture of spinels of the system Mg(FexCr2-x)O4 obtained through the hydroxide coprecipitation method and solid state technology. Eastern-European Journal of Enterprise Technologies, 5(6(77), 57–63. https://doi.org/10.15587/1729-4061.2015.51058

Issue

Section

Technology organic and inorganic substances