Analysis of specific auxetic properties of fullerite С60

Authors

DOI:

https://doi.org/10.15587/1729-4061.2015.51345

Keywords:

indicating surface of auxeticity, degree of auxeticity, Poisson ratio, Gruneisen parameter, Debye temperature, anharmonicity of thermal vibrations

Abstract

For the first time the negative values of the Poisson ratios  have been calculated and the auxetic directions of fullerite  have been determined. The values of the Poisson ratios    are directed along the crystallographic directions of <110> type, which is indicative of the non-axial auxeticity.

It has been established that with a rise in temperature from 100 K to 170 K, the degree of auxeticity  is reduced in proportion to reduction of elastic anisotropy factor . The auxeticity of fullerite  disappears completely in the temperature range of , the anisotropy remaining practically constant (А = 2.2). At  the degree of auxeticity again quickly grows in proportion to a rapid growth of anisotropy А. The revealed regularity is typical for crystals of all types of cubic crystal system: increase in the degree of auxeticity close to phase transition points. Such abnormal behaviour of  and  has been explained on the basis of analysis of thermodynamic properties of fullerite . In the high-temperature region , due to thermal excitation of the rotational degrees of freedom, the chaotic rotation of molecules  is increased, providing for the energy efficiency and stability of a closely packed face-centered cubic structure. It has been established that orientation glass-ordered phase transition is caused by a jump-like change in crystal lattice period  of fullerite , leading to increase in the degree of auxeticity close to .

The mechanisms and regularities of auxeticity formation at points of phase transitions  and  have been revealed. It has been established that the Gruneisen parameter which is a degree of shift of crystal vibration spectrum frequencies    due to a change in the volume is more responsive to crystal lattice deformations.

The method proposed here for determination of abnormal deformations with a change in rotational motion of molecules makes it possible not only to determine the appearance of auxetic properties, but also to get their quantitative value – the Poisson ratio    in certain crystallographic directions (   at ).

Author Biographies

Микола Дмитрович Раранський, Yurіy Fedkovych Chernіvtsi natіonal unіversity 2 Kotsyubynskogo str., Chernivtsi, Ukraine, 58012

Professor, Doctor of physical and mathematical sciences.

Department of Solid State Physics

Віталій Назарович Балазюк, Yuriy Fedkovych Chernivtsi National University 2 Kotsyubynsky str., Chernivtsi, Ukraine, 58012

Candidate of Science in Physics and Mathematics, associate professor

Solid State Physics Department

Михайло Миколайович Гунько, Yuriy Fedkovych Chernivtsi National University 2 Kotsyubynsky str., Chernivtsi, Ukraine, 58012

Postgraduate student

Solid State Physics Department

Андрій Ярославович Струк, Yuriy Fedkovych Chernivtsi National University 2 Kotsyubynsky str., Chernivtsi, Ukraine, 58012

Candidate of Science in Physics and Mathematics, assistant

Department of construction

References

  1. Landau, L. D., Lifshits, Е. M. (1965). Elasticity Theory. Moscow: Nauka, 204.
  2. Voigt, W. (1910). Lehrbuch der Kristallphysik. Leipzig, Berlin: Teubner, 964.
  3. Konyok, D. A., Woiciechovski, K. V., Pleskachevsky, Yu. M., Shilko, S. V. (2004). Materials with Negative Poisson Ratio (Review). Mechanics of Composite Materials and Constructions, 10 (1), 35–69.
  4. Kobelev, N. P., Nikolayev, R. K., Sidoro, N. S., Soyfer, Ya. M. (2002). The Specific Features in the Temperature Behaviour of the Elastic Moduli of Solid . Physics of the Solid State, 44 (3), 416–418.
  5. Raransky, M. D., Balazyuk, V. N., Hunko, M. M. (2015). Auxetic properties of Hexagonal System Crystals. Physics and Chemistry of the Solid State, 16 (1), 34–43.
  6. Tokmakova, S. P. (2005). Stereographic projections of Poisson’s ratio in auxetic crystals. Physica status solidi (b), 242 (3), 721–729. doi: 10.1002/pssb.200460389
  7. Goldshteyn, R. V., Gorodtsov, V. A., Lisovenko, D. S. (2010). Auxetic Mechanics of Crystalline Materials. Mechanics of the Solid State, 4, 43–62.
  8. Belomestnykh, V. N., Soboleva, E. G. (2011). Poisson Ratios of Cubic Ion Crystals. Letters on Materials, 1 (2), 84–87.
  9. Svetlov, I. L., Epitin, A. I., Krivko, A. I., Samoilov, A. I., Odintsev, I. N., Andreev, A. P. (1988). Anisotropy of the Poisson Ratio of Nickel Alloy Monocrystals. Proceedings of the USSR Academy of Sciences. Technical Physics, 302, 1372–1375.
  10. Raransky, M. D., Balazyuk, V. N., Hunko, M. M. (2015). Criteria and Mechanisms for the Origination of the Auxeticity of Cubic System Crystals. Metallofizyka i Novitni Tekhnologii, 37 (3), 379–396.
  11. Tesleva, E. P., Belkova, T. A. (2013). Variants of Limiting Values of the Poisson Ratios of Solids. Phase Transitions, Ordered States and New Materials, 12, 75–78.
  12. Goldshteyn, R. V., Gorodtsov, V. A., Lisovenko, D. S. (2014). Young’s Modulus and the Poisson Ratio for 7-Constant Tetragonal Crystals and Nano/Microtubes on their Basis. Physical Mesomechanics, 17 (5), 5–14.
  13. Sirotin, Yu. I., Shaskolskaya, M. P. (1979). Basics of Crystal Physics. Moscow: Nauka, 680.
  14. Yeletsky, A. V., Smirnov, V. M. (1993). Fullerenes. Advances in Physical Sciences, 2, 3–58.
  15. Aksyonova, N. A., Isakina, A. P., Prokhvatilov, A. I., Strezhemechny, M. A. (1999). Analysis of Thermodynamic Properties of Fullerite . Low Temperature Physics, 25 (8/9), 964–975.
  16. Allers, J.; Mason, U. (Ed.) (1968). The Use of Sound Velocity Measurements to Determine the Debye Temperature in Solids. Lattice Dynamics. Moscow: Mir, 391.
  17. Mikhalchenko, V. P. (2010). On the Debye Temperature Values of Fullerite . Physics of the Solid State, 52 (7), 1444–1452.
  18. Natsik, V. D., Podolsky, A. V. (1998). Theory of Orientational Relaxation in Low-Temperature Phase of Fullerite . Low Temperature Physics, 24 (7), 689–703.

Published

2015-10-24

How to Cite

Раранський, М. Д., Балазюк, В. Н., Гунько, М. М., & Струк, А. Я. (2015). Analysis of specific auxetic properties of fullerite С60. Eastern-European Journal of Enterprise Technologies, 5(5(77), 18–23. https://doi.org/10.15587/1729-4061.2015.51345