Experimental study of heat and mass transfer coefficients at heat recovery of steam-gas flow in the torch of drops of mechanical nozzle

Authors

  • Артур Юрьевич Рачинский National Technical University of Ukraine “Kiev Polytechnic Institute” Pobedy ave, 37, Kiev, Ukraine, 03056, Ukraine https://orcid.org/0000-0001-6622-1517
  • Михаил Константинович Безродный National Technical University of Ukraine “Kiev Polytechnic Institute” Pobedy ave, 37, Kiev, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-0788-5011
  • Николай Никифорович Голияд National Technical University of Ukraine “Kiev Polytechnic Institute” Pobedy ave, 37, Kiev, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-9332-9723
  • Петр Алексеевич Барабаш National Technical University of Ukraine “Kiev Polytechnic Institute” Pobedy ave, 37, Kiev, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-1252-494X

DOI:

https://doi.org/10.15587/1729-4061.2015.55484

Keywords:

contact heat-recovery unit, centrifugal nozzle, heat and mass transfer coefficient, mass transfer coefficient, steam volume fraction

Abstract

The paper deals with the experimental study of heat and mass transfer processes in contact heat-recovery drop-type units using mechanical centrifugal nozzle as a fluid sprayer.
The intensity of heat and mass transfer in contact gas-drop unit with the centrifugal nozzle at the waste-heat recovery of power units was experimentally determined. The studies were carried out in a range of excessive water nozzle pressure (0.2–0.6) MPa and the steam volume fraction of the steam-gas mixture at the inlet of the unit from 0,08 to 0,35. According to the results of experimental studies, heat and mass transfer coefficients that were attributed to the real surface of the drops were determined.
The results of experimental studies of heat and mass transfer coefficients were compared with a single drop. It was found that the heat transfer intensity for drops of the fluid with the steam-gas flow is higher than for a single drop and lower for the mass transfer. Generalizing dependences for heat and mass transfer processes for the torch of the spray cone drops were obtained.

Author Biographies

Артур Юрьевич Рачинский, National Technical University of Ukraine “Kiev Polytechnic Institute” Pobedy ave, 37, Kiev, Ukraine, 03056

PhD student

Department of Theoretical and Industrial Heat Engineering

Михаил Константинович Безродный, National Technical University of Ukraine “Kiev Polytechnic Institute” Pobedy ave, 37, Kiev, Ukraine, 03056

Professor, Doctor of technical sciences, deputy head of the department

Department of Theoretical and Industrial Heat Engineering

Николай Никифорович Голияд, National Technical University of Ukraine “Kiev Polytechnic Institute” Pobedy ave, 37, Kiev, Ukraine, 03056

Lecturer

Department Chair of Theoretical and Industrial Heat Engineering

Петр Алексеевич Барабаш, National Technical University of Ukraine “Kiev Polytechnic Institute” Pobedy ave, 37, Kiev, Ukraine, 03056

Associate professor, Candidate of technical science

Department Chair of Theoretical and Industrial Heat Engineering

References

  1. Galustov, V. S. (1989). Pryamotochnyye raspylitel'nyye apparaty v teploenergetike. Moscow: Energoatomizdat, 240.
  2. Pazhi, D. G. (1984). Osnovy tekhniki raspylivaniya zhidkostey. Moscow: Khimiya, 255.
  3. Khavkin, Yu. I. (1976). Tsentrobezhnyye forsunki. Leningrad, Mashinostroyeniye, 168.
  4. Zhovmir, M. M. (2008). Utylizatsiya nyzkotemperaturnoyi teploty produktiv zhorannya palyv za dopomohoyu teplovykh nasosiv. Prommyshlennaya Teplotekhnika, 30 (2), 90–98.
  5. Brin', A. A., Petruchik, A. I. (2011). Teplovoy raschet ezhektsionnoy gradirni i sposob povysheniya yeye effektivnosti. Inzhenerno-fizicheskij zhurnal, 84 (2), 270–273.
  6. Dyatlov, I. N. (1980). Raspylivaniye topliva v kamerakh sgoraniya gazoturbinnykh dvigateley Trudy KAI im. A. N. Tupoleva. Kazan', 4, 4–15.
  7. Lykov, M. V., Leonchik, B. I. (1966). Raspilitel’nie syshilki. Moscow: Mashinostroyeniye, 331.
  8. Tarabanov, M. G., Vidin, Ju. V., Bojkov, G. P. (1974). Teplo- y massoperenos v kamerakh oroshenyya kondytsyonerov s forsunkamy raspylenyya. Krasnoyarsk: Kr.PI, 211.
  9. Dikiy, N. A., Solomaha, A. S., Petrenko, V. G. (2011). Povysheniye effektivnosti GTU «Vodoley» okhlazhdeniyem vozdushnogo potoka v kompressore. Naukovi visti NTUU «KPI», 5, 31–34.
  10. Fisenko, S. P., Brin, A. A. (2006). Heat and mass transfer and condensation interference in a laminar flow diffusion chamber. International Journal of Heat and Mass Transfer, 49 (5-6), 1004–1014. doi: 10.1016/j.ijheatmasstransfer.2005.09.007
  11. Terekhov, V. I., Pahomov, M. A. (2003). Chislennoye issledovaniye gidrodinamiki, teplo- i massoobmena dvukhfaznogo gazoparokapel'nogo potoka v trube. Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 44 (1), 108–122.
  12. Pakhomov, M. A. (2009). Chislennoye issledovaniye gidrodinamiki i teplomassoobmena v pristennykh i struynykh gazokapel'nykh potokakh. Novosibirsk, 39.
  13. Mustafin, R. R. (2010). Matematicheskoye modelirovaniye protsessov teplomassoobmena dvukhfaznykh potokov v dvigatelyakh letatel'nykh apparatov. Ufa, 15.
  14. Tumashova, A. V. (2011). Modelirovaniye protsessov teplo- i massoobmena v forsunochnykh orositel'nykh kamerakh. Tomsk, 19.
  15. Pakhomov, M. A., Terekhov, V. I. (2013). Second moment closure modelling of flow, turbulence and heat transfer in droplet-laden mist flow in a vertical pipe with sudden expansion. International Journal of Heat and Mass Transfer, 66, 210–222. doi: 10.1016/j.ijheatmasstransfer.2013.07.013
  16. Bezrodnyj, M. K., Golijad, N. N., Barabash, P. A., Rachinskij, A. Ju., Golubev, A. B. (2013). Nekotoryye kharakteristiki raspyla tsentrobezhnykh forsunok kontaktnykh utilizatorov otkhodyashchikh gazov kapel'nogo tipa. Prommyshlennaya Teplotekhnika, 35 (6), 31–38.
  17. Bezrodnyj, M. K., Golijad, N. N., Barabash, P. A., Golubev, A. B., Rachinskij, A. Ju. (2013). Vplyv vkhidnykh parametriv vody na tonkistʹ rozpylu vidtsentrovykh forsunok. Enerhetyka: ekonomika, tekhnolohiyi, ekolohiya, 2, 23–30.
  18. Bezrodnyj, M. K., Golijad, N. N., Rachinskij, A. Ju. (2014). Do vyznachennya poverkhni teplomasoobminu v kontaktnykh teploutilizator krapel'noho typu. Eastern-European Journal of Enterprise Technologies, 1 (8 (67)), 21–26. doi: 10.15587/1729-4061.2014.20646
  19. Bruckner, A. P., Mattick, A. T. (1984). High effectiveness liquid droplet/gas heat exchanger for space power applications. Acta Astronautica, 11 (7–8), 519–526. doi: 10.1016/0094-5765(84)90091-2
  20. Ranz, W. (1952). Evaporation from Drops. Part II. Chemical Engineering Progress,48 (4), 173–180.
  21. Terekhov, V. I., Terehov, V. V., Shishkin, N. E., Bi, K. Ch. (2010). Eksperymental'ne ta chysel'ne doslidzhennya ne - statsionarnoho vyparovuvannya krapel' ridyny. Inzhenerno-fizicheskij zhurnal, 83 (5), 829–836.

Published

2015-12-25

How to Cite

Рачинский, А. Ю., Безродный, М. К., Голияд, Н. Н., & Барабаш, П. А. (2015). Experimental study of heat and mass transfer coefficients at heat recovery of steam-gas flow in the torch of drops of mechanical nozzle. Eastern-European Journal of Enterprise Technologies, 6(8(78), 50–59. https://doi.org/10.15587/1729-4061.2015.55484

Issue

Section

Energy-saving technologies and equipment