Simulation of the vapor phase composition in HNO3 – H2SO4 – H2O system with low content of nitric acid

Authors

  • Сергей Алексеевич Кондратов Institute of Chemical Technology, Volodymyr Dahl’s East Ukrainian National University, Lenina street 31, Rubezhnoye, Luhans'ka oblast, 93010, Ukraine https://orcid.org/0000-0002-1963-0155
  • Татьяна Николаевна Хлякина Institute of Chemical Technology, Volodymyr Dahl’s East Ukrainian National University 1g/36 Zavodskaya St., Rubezhnoe Lugansk region, Ukraine, 93001, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2015.55879

Keywords:

mathematical modeling, HNO3 – H2SO4 – H2O system, vapor phase, composition, temperature

Abstract

Based on the analysis and processing of literature data, the mathematical model describing the vapor phase composition of the ternary system nitric acid – sulfuric acid – water from the liquid phase composition and temperature at a low mole fraction of nitric acid was developed. It was shown that even with low content of nitric acid in the system, deviations of the ideal solution and the execution of the Raoult's law to within a factor (activity coefficient), the value of which depends on the sulfuric acid concentration are observed. It was found that with an increase in the mass concentration of sulfuric acid from 60 to 80 %, the mean values of the activity coefficients increase linearly with the coefficient of determination 0, 998. The general equation of the model – dependence of the partial pressure of the nitric acid on the temperature (t, oC), the mole fraction of nitric acid (x), and the mass concentration of sulfuric acid (, % mass) has the form of a non–linear dependence, obtained by combining the Antoine, Raoult's equations and the dependence of the nitric acid activity coefficient on sulfuric acid concentration.

It was found that using the equations of the model for the ternary system HNO3 – H2SO4 – H2O at mole fraction of nitric acid in the solution of up to 0.02, it is possible to predict normal boiling points with the maximum error not exceeding 5 °C, and mole fractions of nitric acid in the vapor phase with a relative error no more than 10 %.

The model can be used as a subsystem in developing the mathematical model of the reactor for adiabatic nitration of aromatic compounds, as well as in calculating and designing the regeneration systems of spent sulfuric acid.

Author Biographies

Сергей Алексеевич Кондратов, Institute of Chemical Technology, Volodymyr Dahl’s East Ukrainian National University, Lenina street 31, Rubezhnoye, Luhans'ka oblast, 93010

Dr. Sc. (Chemistry), Professor, Head of the department

Department of mathematics and computer technologies

 

Татьяна Николаевна Хлякина, Institute of Chemical Technology, Volodymyr Dahl’s East Ukrainian National University 1g/36 Zavodskaya St., Rubezhnoe Lugansk region, Ukraine, 93001

The Head of Scientific-Research Centre of Research and Production Enterprise "Zarya" Ltd,

PhD student

References

  1. Zhilin, V., Zbarskiy V. (2006). Sintez i tehnologiya nitroproizvodnyh benzola i toluola. Rossiiskii Khimichskii Jurnal, 50 (3), 104–115.
  2. Olah, G., Malhorta, R., Narang, S. (1989). Nitration. Methods and Mechanisms. New York: VCH, 330.
  3. Alexanderson, V, Trecek, J. B., Vanderwaart, C. M. (1977). Adiabatic process for nitration of nitratable aromatic compounds. United States Patent CA1069137A, CA1069137A1, DE2655197A1, DE2655197C2. № 4021498; declared 09.12.1975; published 03.05.1977.
  4. Alexanderson, V, Trecek, J. B., Vanderwaart, C. M. (1978). Continuous adiabatic process for the mononitration of benzene. United States Patent CA1083608A, CA1083608A1, DE2821571A1. № 4091042; declared 19.08.1977; published 23.05.1978
  5. Munnig, J., Pennemann, B., Rausch, A. K. (2013). Process for the continuous preparation of nitrobenzene. United States Patent CN102153476A, CN102153476B, DE102010006984A1, EP2354117A1, EP2354117B1, US20110196177. № 8357827; declared 02.02.2011; published 22.01.2013.
  6. Rausch, A., Knauf, T., Bolton, J., Racoes, A. (2010). Process for the preparation of nitrobenzene by adiabatic nitration. United States Patent CN101456817A, DE102007059513A1, EP2070907A1, EP2070907B1, US20090187051. № 7781624; declared 08.12.2008; published 24.08.2010.
  7. Konig, B.-M., Judat, H., Blank, H. U. (1997). Process for the adiabatic preparation of mononitrotoluenes. United States Patent CA2142257A1, CA2142257C, CN1070472C, CN1111614A, DE4410417A1, EP0668263A1, EP0668263B1. № 5648565; declared 12.07.1996; published 15.07.1997.
  8. Gattrell, M. (2014). Process for adiabatic production of mononitrotoluene. United States Patent CN104220416A, DE112013001622T5, US20130253233, WO2013140369A1, WO2013140369A9. № 8907144; declared 22.03.2012; published 09.12.2014.
  9. Blank, H. U., Judat, H., Konig, B.-M. (1998). Process for the adiabatic preparation of mononitrohalogenobenzenes. United States Patent DE4411064A1, EP0675104A1, EP0675104B1. № 5714647; declared 21.01.1997; published 3.02.1998.
  10. Washburn, E. W. ed.-in-chief (1928). International critical tables of numerical data, physics, chemistry and technology. New York: McGrow Hill, 3, 444.
  11. Ellis, S. R. M., Thwaites, J. M. (1957). Vapour-liquid equilibria of nitric acid – water-sulphuric acid mixtures. Journal of Applied Chemistry, 7 (4), 152–160. doi: 10.1002/jctb.5010070402
  12. Zhang, R., Wooldridge, P. J., Molina, M. J. (1993). Vapor pressure measurements for the H2SO4/HNО3/H2О and H2SO4/HCl/H2О systems: incorporation of stratospheric acids into background sulfate aerosols. Journal of Physical Chemistry, 97 (32), 8541–8548. doi: 10.1021/j100134a026
  13. Kondratov, S. A., Krasil’nikova, A. A. (2013). Model of adiabatic nitration of aromatic compounds. Eastern-European Journal of Enterprise Technologies, 3 (6 (66)), 16–20. Available at: http://journals.uran.ua/eejet/article/view/14783/12585
  14. Perry, R. H., Green, D. W. eds. (1999). Perry's chemical engineers' handbook. New York: McGraw-Hill, 2–79.
  15. Hoggett, J. G., Moodie, R. B., Penton, J. R., Schofield, K. (1971). Nitration and aromatic reactivity.Cambridge: University Press, 246.

Published

2015-12-22

How to Cite

Кондратов, С. А., & Хлякина, Т. Н. (2015). Simulation of the vapor phase composition in HNO3 – H2SO4 – H2O system with low content of nitric acid. Eastern-European Journal of Enterprise Technologies, 6(6(78), 22–26. https://doi.org/10.15587/1729-4061.2015.55879

Issue

Section

Technology organic and inorganic substances