Research of temperature regime of electronic device at variable heat generation and external boundary conditions

Authors

  • Володимир Михайлович Батуркін National Technical University of Ukraine "Kiev-polyteh nycheskyy Institute" Victory Avenue 37, Kiev, Ukraine, 03056, Ukraine
  • Євген Вікторович Шевель National Technical University of Ukraine "Kiev-polyteh nycheskyy Institute" Victory Avenue 37, Kiev, Ukraine, 03056, Ukraine
  • Юлія Вікторівна Кузан National Technical University of Ukraine "Kiev-polyteh nycheskyy Institute" Victory Avenue 37, Kiev, Ukraine, 03056, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2012.5718

Keywords:

thermal control systems, device, heat pipe, modeling

Abstract

The thermal model of electronic device (sizes 0.36 x 0.24 x 0.16 m, mass 4 kg), functioning in the conditions of space vacuum, is offered. The temperature regime of device case is maintained by the passive thermal control system on heat pipe of variable thermal resistance with heat removal by the radiation into the opened space. The analysis of components of thermal balance for the electronic device case is conducted, and an approach to the thermal modeling of the system “electronic cards – device case – heat pipe – environment” is developed by means of the SolidWorks Flow Simulation program. The parameters of required structural elements (multilayer thermal insulation, supports), at which the passive regulation of the device temperature in the range of 293±10 K at the change of heat generation from 1.5 W to 15 W, the temperature of environment surrounding a device within 253...323 K, and absorbed heat flux from external sources of 120…270 W/m2 is realized, are determined. On the basis of conducted thermal modeling the temperature conditions of device case and elements of electronic printing cards at heat generation density to 0.5 kW/m2 at the use of the passive thermal control system on the gas-regulated heat pipe is calculated. Tasks for creation of thermal model that represents thermal processes in a heat pipe more correctly for its integration in a standard commercial package, for example, in SolidWorks Flow Simulation are defined. The obtained results are intended for the use at development of scientific equipment of nonhermetic space vehicles.

Author Biographies

Володимир Михайлович Батуркін, National Technical University of Ukraine "Kiev-polyteh nycheskyy Institute" Victory Avenue 37, Kiev, Ukraine, 03056

Doctor of Technical Sciences, senior scientist

Sub-department of Nuclear power stations and engineering thermal physics

Євген Вікторович Шевель, National Technical University of Ukraine "Kiev-polyteh nycheskyy Institute" Victory Avenue 37, Kiev, Ukraine, 03056

Candidate of Technical Sciences, associate professor

Sub-department of Nuclear power stations and engineering thermal physics

Юлія Вікторівна Кузан, National Technical University of Ukraine "Kiev-polyteh nycheskyy Institute" Victory Avenue 37, Kiev, Ukraine, 03056

Undergraduate

Sub-department of Nuclear power stations and engineering thermal physics

References

  1. Пяк Б. Н. Обзор современных систем радиационного терморегулирования научных приборных отсеков космических аппаратов [Текст] / Б. Н. Пяк, С. Н. Царевский // Конструирование научной космической аппаратуры: сб. научн. трудов. – М.: Наука, 1976. – С. 56–63.
  2. Алексеев В. A. Расчет устройств охлаждения электронной аппаратуры с использованием плавящихся веществ [Текст] / В. А. Алексеев, В. В. Антонов // Электронная техника в автоматике: cб. научн. трудов. – М.: Радио и связь. – 1985.– Bып. 16. – C. 147–155.
  3. Андреанов В. Автоматические планетарные станции [Текст] / В. Андреанов,В. Артамонов [и др.] – М.: Наука, 1973. – 280 с.
  4. Низкотемпературные тепловые трубы для летательных аппаратов [Текст] / В. Г. Bоронин, А. В. Peвякин, В. Я. Сасин и др.; под ред. Г. И. Воронина. – М.: Машиностроение, 1976. – 200 с.
  5. Edwards D. K. Theory and design of variable conductance heat pipes: steady state and transient performance: Research Report N3, CR – 114530 / D. K. Edwards, G. L. Fleischman, B. D. Marcus // TRW systems Group. – 1972.
  6. Delil A.A.M., van der Vooren J. Uniaxial model for gas–loaded variable conductance heat pipe performance in the inertial flow regime: Proc. 4th Int. Heat Pipe Conf. “Advances in Heat Pipe Technology, London, 1981. – pp. 359-372.
  7. Antoniuk D. Generalized modelling of steady state and transient beha-viour of variable conductance heat pipes: Proc. of AIAA 22nd Thermophysics Conf., Honolulu HI, USA, 1987.
  8. Батуркин В. М. Система терморегулирования космической аппаратуры на основе газорегулируемой тепловой трубы [Текст] / В. М. Батуркин, А. А. Дудев, // Конструирование и технология изготовления космических приборов. – М.: Наука, 1985. – С. 22-32.
  9. Батуркин В. М. Исследование характеристик системы терморегулирования электронного блока с применением тепловой трубы переменного термического сопротивления [Текст] / В. М. Батуркин, А. А. Дудев, Н. К. Гречина // Конструирование и технология изготовления космических приборов. – М.: Наука, 1987. – С. 44-57.
  10. Батуркин В. М. Системы обеспечения теплового режима на основе тепловых труб для научного космического приборостроения [Текст] : дис. ... доктора техн. наук / Батуркин Владимир Михайлович. – К., 2011. – 350 с.

Published

2012-12-17

How to Cite

Батуркін, В. М., Шевель, Є. В., & Кузан, Ю. В. (2012). Research of temperature regime of electronic device at variable heat generation and external boundary conditions. Eastern-European Journal of Enterprise Technologies, 6(5(60), 40–44. https://doi.org/10.15587/1729-4061.2012.5718