Efficiency of alkali activated hybrid cements for immobilization of low-level radioactive anion-exchange resins

Authors

  • Pavlo Kryvenko Kyiv national university of construction and architecture Povitroflotskii ave., 37, Kyiv, Ukraine, 03037, Ukraine https://orcid.org/0000-0001-7697-2437
  • Hailin Cao Advanced materials Research Institute The Tenth Kejinan Road, High-tech Zone, Nanshan District, Shenzhen, PR. China, 518057, China
  • Oleg Petropavlovskyi Kyiv national university of construction and architecture Povitroflotskii ave., 37, Kyiv, Ukraine, 03037, Ukraine https://orcid.org/0000-0002-3381-1411
  • Luqian Weng Advanced materials Research Institute The Tenth Kejinan Road, High-tech Zone, Nanshan District, Shenzhen, PR. China, 518057, China

DOI:

https://doi.org/10.15587/1729-4061.2016.59488

Keywords:

cementation, low­level radioactive wastes, immobilization, anion­active resins

Abstract

Immobilization by cementation of anion­exchange resins is closely associated with high pH­values of a cement matrix as a result of compositional build­up of the cements used as binding agents. At high pH values the anion­exchange resins with acid reaction (pH<5) start recycling in a body of the hardening cement compound resulting in its destruction. The paper covers the results on efficiency of the hybrid alkali activated cements as binding agents which at the initial stage of hydration have high pH values of the cement stone (pH>12), thus providing a required strength gain. Later, pH values tend to lower (pH<10), thus retarding the process of resin recycling to the values which do not affect negatively durability of the resulted solidified waste forms. The examples of hybrid alkali activated cements compositional build up are provided together with physico­mechanical properties of the resulted solidified waste forms. These results show that these properties are superior to those specified in the standards of the P. R. China, these are: GB 7023 and GB 14569.

Author Biographies

Pavlo Kryvenko, Kyiv national university of construction and architecture Povitroflotskii ave., 37, Kyiv, Ukraine, 03037

Doctor of Technical Sciences, Professor

V. D. Glukhovskii Scientific research institute for binders and materials

Hailin Cao, Advanced materials Research Institute The Tenth Kejinan Road, High-tech Zone, Nanshan District, Shenzhen, PR. China, 518057

PhD, Professor

Shenzhen Academy of Aerospace Technology

Oleg Petropavlovskyi, Kyiv national university of construction and architecture Povitroflotskii ave., 37, Kyiv, Ukraine, 03037

PhD, Senior Researcher

V. D. Glukhovskii Scientific research institute for binders and materials

Luqian Weng, Advanced materials Research Institute The Tenth Kejinan Road, High-tech Zone, Nanshan District, Shenzhen, PR. China, 518057

PhD, Professor

Shenzhen Academy of Aerospace Technology

References

  1. Macphee, D. E., Glasser, F. P. (1993). Immobilization Science of Cement Systems. MRS Bulletin, 18 (03), 66–71. doi: 10.1557/s0883769400043931
  2. El-Kamash, A. M., El-Dakroury, A. M., Aly, H. F. (2002). Leaching kinetics of 137Cs and 60Co radionuclides fixed in cement and cement-based materials. Cement and Concrete Research, 32 (11), 1797–1803. doi: 10.1016/s0008-8846(02)00868-2
  3. Hoyle, S. L., Grutzeck, M. W. (1989). Incorporation of Cesium by Hydrating Calcium Aluminosilicates. Journal of the American Ceramic Society, 72 (10), 1938–1947. doi: 10.1111/j.1151-2916.1989.tb06004.x
  4. Krivenko, P. V., Skurchinskaya, J. V., Lavrinenko, L. V., Starkov, O. V., Konovalov, E. E.; Krivenko, P. V. (Ed.) (1994). Physico-chemical bases of radioactive wastes - Immobilisation in a mineral-like solidified stone. Proceed. of the First International Conference on Alkaline Cements and Concretes, 1, 1095–1106.
  5. Gluhovskij, V. D. (1962). Gruntosilikaty, ih svojstva, tekhnologiya proizvodstva i primeneniya. Kyiv: KISI.
  6. Krivenko, P. V. (1986). Sintez vyazhushchih so special'nymi svojstvami v sisteme Me2O-MeO-Me2O3-SiO2-H2O. Kyiv: KPI.
  7. Krivenko, P. V., Skurchinskaya, J. V. (1991). Fly ash containing geocements. Int. Conf. on the utilization of by-product, 18–20.
  8. Shi, C, Shen, X., Wu, X, Tang, M. (1994). Immobilization of radioactive wastes with portland and alkali-slag cement pastes. IL CEMENTO, 91, 97–108.
  9. Krivenko, P. V., Skurchinskaya, J. V., Lavrinenko, L. V. (1993). Environmentally Safe Immobilization of Alkali Metal Radioactive Waste within Alkaline Binder, Tsement, 3, 31–33.
  10. Krivenko, P. V., Skurchinskaya, J. V., Lavrinenko L. V. (1993). Environmentally Safe Immobilization of Alkali Metal Radioactive Waste. Proc. Int.Conf. "Concrete-2000", 1579–1587.
  11. Krivenko, P. V. (2014). Geocement matrices for immobilization of radioactive wastes. Proc. of the 2nd Int. Conf. "Advances in chemically – activated materials CAM 2014, 102–116.
  12. Bernal, S. A., Krivenko, P. V., Provis, J. L., Puertas, F., Rickard, W. D. A., Shi, C., van Riessen, A. (2013). Other Potential Applications for Alkali-Activated Materials. RILEM State-of-the-Art Reports, 339–379. doi: 10.1007/978-94-007-7672-2_12
  13. Krivenko, P. V., Skurchinskaya, Zh. V., Konovalov, E. E., Starkov, O. V. (1994). Physico- chemical bases of immobilization of radioactive wastes into mineral-like water-resistant stone in the Proceed.of Int.Conf. on Alkaline cements and concretes, 929–943.
  14. Krivenko, P. V., Skurchinskaya, Zh. V. et al. (1997). Utilization an immobilization of various toxic astes. Ecology and Resources Saving, 5, 62–67.
  15. Konovalov, E. E., Lastov, A. I. et al. (1994). Immobilization of radioactive wastes by solidification into geocement-based stones. XV Mendeleev Meeting on General and Applied Chemistry “Radiological problems in nuclear energy and production conversion”. Part 1, 273–280.
  16. Van Jaarsveld, J. G. S., Van Deventer, J. S. J., Lorenzen, L. (1998). Factors affecting the immobilization of metals in geopolymerized flyash. Metallurgical and Materials Transactions B, 29 (1), 283–291. doi: 10.1007/s11663-998-0032-z -z
  17. Van Jaarsveld, J. G. S., van Deventer, J. S. J. (1999). The effect of metal contaminants on the formation and properties of waste-based geopolymers. Cement and Concrete Research, 29 (8), 1189–1200. doi: 10.1016/s0008-8846(99)00032-0
  18. Palomo, A., Palacios, M. (2003). Alkali-activated cementitious materials: Alternative matrices for the immobilisation of hazardous wastes. Cement and Concrete Research, 33 (2), 289–295. doi: 10.1016/s0008-8846(02)00964-x
  19. Palacios, M., Palomo, A. (2004). Alkali-activated fly ash matrices for lead immobilisation: a comparison of different leaching tests. Advances in Cement Research, 16 (4), 137–144. doi: 10.1680/adcr.16.4.137.46661
  20. Krivenko, P. V., Guziy, S. G., Kyrychok, V. I. (2014). Geocement-Based Coatings for Repair and Protection of Concrete Subjected to Exposure to Ammonium Sulfate. Advanced Materials Research, 923, 121–124. doi: 10.4028/www.scientific.net/amr.923.121
  21. Kryvenko, P., Guzii, S., Kovalchuk, O., Kyrychok, V. (2016). Sulfate Resistance of Alkali Activated Cements. Materials Science Forum, 865, 95–106. doi: 10.4028/www.scientific.net/msf.865.95
  22. Krivenko, P., Petropavlovsky, O., Gelevera, A., Kavalerova, E. (2012). Special alkali activated cements with low pH value for concretes intended for engineered disposal facilities for radioactive wastes, Conference “I8.ibausil”, I-0591–I-0598.
  23. Croymans, T., Schroeyers, W., Krivenko, P., Kovalchuk, O., Pasko, A., Hult, M. et. al. (2016). Radiological characterization and evaluation of high volume bauxite residue alkali activated concretes. Journal of Environmental Radioactivity. doi: 10.1016/j.jenvrad.2016.08.013
  24. Kryvenko, P., Hailin, C., Petropavlovskyi, O., Weng, L., Kovalchuk, O. (2016). Applicability of alkali-activated cement for immobilization of low-level radioactive waste in ion-exchange resins. Eastern-European Journal of Enterprise Technologies, 1 (6 (79)), 40–45. doi: 10.15587/1729-4061.2016.59489
  25. GB 7023 PRC Standard. Standard test method for leachability of low and intermediate level solidified radioactive waste forms
  26. GB 14569 PRC Standard. Performance requirements for low and intermediate level radioactive waste form. Cemented waste form

Downloads

Published

2016-10-30

How to Cite

Kryvenko, P., Cao, H., Petropavlovskyi, O., & Weng, L. (2016). Efficiency of alkali activated hybrid cements for immobilization of low-level radioactive anion-exchange resins. Eastern-European Journal of Enterprise Technologies, 5(10 (83), 38–43. https://doi.org/10.15587/1729-4061.2016.59488