Principles of development of invariant piezoresonance units with controlled dynamics
DOI:
https://doi.org/10.15587/1729-4061.2012.5996Keywords:
quartz resonator, piezoresonance units, system with controlled dynamics, multi-frequency oscillation systemquartz resonator, multi-frequency oscillation systemAbstract
The paper represents principles of development of invariant to disturbing factors of piezoresonance units with controlled dynamics. The architecture of invariant multi-frequency piezoresonance units with controlled dynamics (IMFRU/CD) is represented as adaptive control system with predictive reference model. Its main component is the piezoresonance units’ core – multi-frequency piezoresonance oscillatory system (MPOS), with embedded supporting circuits of control, thermal and vibrational compensation, which is exposed to destabilize disturbing factors.
The objectives and criteria for terminal control were formulated in accordance to which the control process is divided into two stages: setting and stabilizing oscillation. The mathematical model of MPOS has been developed having in its base reduced by differential equations for amplitudes, phases of oscillations and voltages of auto-bias of active components in excitation channels.
The offered approach to development of piezoresonance units with controlled dynamics has allowed creating the new class of PRU to be invariant to disturbing destabilizing factors. This approach grounds on the principle of using natural redundancy (multi-frequency) of the piezoresonance units’ core that allows on the base of invariance theory not only synthesis of the system with current identification of disturbing factors, but also adaptation of the piezoresonance units relatively to their effectsReferences
- Kolpakov F., Pidchenko S. (2011). Theory and fundamentals implementation of invariant piezoresonance systems, National Aerospace University (KhAI), ISBN 978-966-662-222-1, Kharkov, Ukraine.
- Zelensky A. A., Pidchenko S. K. Principles of invariant piezoresonance oscillatory systems. 4th International Radio Electronic Forum (IREF’2011): Proceedings of the International Conference ICTST’2011, October 18-21, Kharkov, Ukraine, Vol. 2, pp. 32-35.
- Kolpakov F., Pidchenko S., Taranchuk A. (2008). Invariant piezoresonance oscillatory systems // Measuring and Computing Devices in Technological Processes, Vol. 1, Khmelnitsky national university, ISSN 2219-9365, Khmelnitsky, Ukraine, pp. 174-190.
- Kolpakov F., Pidchenko S., Hilchenko G. (1999). Minimization of settling time of oscillations in multi-channel multi-frequency crystal oscillator // Radiotehnika, Vol. 2, ISSN 0033-8486, Moscow, Russia, pp. 42 - 44.
- Kolpakov F., Pidchenko S. (1999). Syntheses of many-channel multifrequency quartz crystal oscillators with reduced (shortened) time of adjusting oscillations // Zarubejnaya radioelectronica, Vol. 11, ISSN 0373-2428, Moscow, Russia, pp. 60 - 65.
- Krutko P. D. (1991). Optimization of control systems from functionals characterizing the energy of motion // Reports of the Academy of Sciences USSR, Vol. 320, №3.
- Zelensky A. A., Pidchenko S. K., Taranchuk A. A. Multifrequency core structure of an invariant quartz oscillatory system. 11th International Conference on "Modern Problems of Radio Engineering, Telecommunications and Computer Science" (TCSET’2012). Lviv-Slavske, Ukraine, 2012. P. 125.
- Kolpakov F., Pidchenko S., Hilchenko G. (1997). Features of setting process of the oscillations in the multi-channel multi-frequency crystal oscillator // Radiotehnika, Vol. 12, ISSN 0033-8486, Moscow, Russia, pp. 95 - 98.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Alexander Zelensky, Sergey Pidchenko, Alla Taranchuk
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.