Study of multiplexer based on surface plasmon-polaritons for communication devices

Authors

  • Денис Володимирович Невінський National University "Lviv Polytechnic" 12 S. Bandera str., Lviv, Ukraine, 79013, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2016.60634

Keywords:

surface plasmon-polariton, multiplexer, model, projection optical lithography, channel

Abstract

Surface plasmon-polaritons provide a unique opportunity to create devices for signals localization and control on an optical subwavelength scale. They can be used as promising data carriers in highly integrated nanooptical transmission systems. Dielectric waveguides based on surface plasmon-polaritons (SPP) arise a particular interest in devices that will run in ultra high-speed data transmission ranges. The paper demonstrates the samples of the four-channel multiplexer based on SPP that works with ultra high-speed pulses. The multiplexer samples are developed using quite simple, but an extremely accurate method of phased optical lithography (POL). For excitation of the SPP, the 800 nm Ti: sapphire laser with a pulse frequency of 27 fs is used. We have shown the ultra high-speed distribution of SPP on the 10×5 µm multiplexer. Experimental studies are tested in the simulation by a finite difference method in the time domain. Good agreement between the experimental results and numerical simulation is obtained.

Author Biography

Денис Володимирович Невінський, National University "Lviv Polytechnic" 12 S. Bandera str., Lviv, Ukraine, 79013

Assistant

Department of electronic information and computer technologies.

References

  1. Wen, F., Zhang, Y., Gottheim, S., King, N. S., Zhang, Y., Nordlander, P., Halas, N. J. (2015). Charge Transfer Plasmons: Optical Frequency Conductances and Tunable Infrared Resonances. ACS Nano, 9 (6), 6428–6435. doi: 10.1021/acsnano.5b02087
  2. Wei, H., Wang, Z., Tian, X., Käll, M., Xu, H. (2011). Cascaded logic gates in nanophotonic plasmon networks. Nature Communications, 2, 387. doi: 10.1038/ncomms1388
  3. Fang, X., MacDonald, K. F., Zheludev, N. I. (2015). Controlling light with light using coherent metadevices: all-optical transistor, summator and invertor. Light: Science & Applications, 4, e292. doi: 10.1038/lsa.2015.65
  4. Caulfield, H. (2004). The logic of optics and the optics of logic. Information Sciences, 162 (1), 21–33. doi: 10.1016/j.ins.2003.01.002
  5. Ebbesen, T. W., Genet, C., Bozhevolnyi, S. I. (2008). Surface-plasmon circuitry. Physics Today, 61 (5), 44–50. doi: 10.1063/1.2930735
  6. Bozhevolnyi, S. I., Volkov, V. S., Devaux, E., Laluet, J.-Y., Ebbesen, T. W. (2006). Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature, 440 (7083), 508–511. doi: 10.1038/nature04594
  7. Verhagen, E., Dionne, J. A., Kuipers, L. (Kobus), Atwater, H. A., Polman, A. (2008). Near-Field Visualization of Strongly Confined Surface Plasmon Polaritons in Metal−Insulator−Metal Waveguides. Nano letters, 8 (9), 2925–2929. doi: 10.1021/nl801781g
  8. Evlyukhin, A. B., Bozhevolnyi, S. I. (2006). Surface plasmon polariton guiding by chains of nanoparticles. Laser Physics Letters, 3 (8), 396–400. doi: 10.1002/lapl.200610014
  9. Pavlysh, V. A., Zakalyk, L. I., Nevinskiy, D. V., Lebid, S. Y. (2013). Surface plasmon waves on the nanoscale films. Microwave and Telecommunication Technology, 885–886.
  10. Nevinskyi, D. V., Pavlysh, V. A., Zakalyk, L. I., Lebid, S. Yu. (2015). Four Channel Splitter on Surface Plasmons-Polaritons. Nanomaterials: Applications & Properties, 4 (2).
  11. Nevinskyi, D., Pavlysh, V., Zakalyk, L., Lebid, S. (2015). Surface plasmon polariton four-channel splitter and adder. Young scientists towards the challenges of modern technology.
  12. Nevinskyі, D. V., Pavlysh, V. A., Zakalyk, L. I., Lebid, S. Yu. (2015). Surface plasmon-polaritons nanoscale waveguides obtained by optical photolithography. Electronics and Telecommunications, 818, 242–249.

Published

2016-02-27

How to Cite

Невінський, Д. В. (2016). Study of multiplexer based on surface plasmon-polaritons for communication devices. Eastern-European Journal of Enterprise Technologies, 1(9(79), 30–37. https://doi.org/10.15587/1729-4061.2016.60634

Issue

Section

Information and controlling system