A design of radiation-proof material for protecting the medical staff

Authors

DOI:

https://doi.org/10.15587/1729-4061.2016.63753

Keywords:

medicine, equipment, protection, materials, absorption, electromagnetic radiation, expanded polystyrene, staff/personnel, graphite

Abstract

The use of sophisticated medical equipment that operates at microwave frequencies draws attention to the methods and means of protecting the medical staff from exposure to occupational hazards, such as electromagnetic super-high frequency (SHF) radiation. The article considers improving the properties of expanded polystyrene (EPS)-based absorbent materials with graphite additives and emphasizes the ratio “an effective protection – a cheaper production.”

The test material was of two types: with a matching layer and without it. The absorbent material with a matching layer has a lower reflectance than the one without it. In addition, the reflectance of material with a matching layer is almost insensitive of the angle of incidence of electromagnetic waves. The test frequency band corresponds to reflectance higher than 30 dB and the frequency of 75 GHz – to reflectance of 40 dB.

The study of a graphite-using absorbent material that provides damping of electromagnetic waves in the direction of their propagation has focused on the effect of the size of graphite particles in an aquadag on its absorptive properties. An aquadag with the graphite particles’ size of 30–70 microns has the best characteristics of the selected frequency band.

The improved methods of asymptotic solution of the problem of synthesizing the non-reflective layer at the normal incidence of a plane wave have extended to the general case – an arbitrary structure of the field in the direction of the fall. It is proved that the properties of the coating are determined ultimately by the spatial inhomogeneity of the electrical and physical properties of the material in the direction of propagation of electromagnetic waves.

The findings are important for further research on absorbent materials with improved properties of absorption and reflectance in a broad range of angles of incidence from the lower portion of the frequency spectrum. This study and the findings thereof allow improving the properties of the materials to ensure collective and individual protection of medical personnel from exposure to high levels of radiation.

Author Biographies

Vladimir Semenets, Kharkiv National University of Radio Electronics 14 Nauki ave., Kharkiv, Ukraine, 61166

Doctor of Technical Sciences, Professor

Department “Metrology and measuring equipment”

Tetiana Stytsenko, Kharkiv National University of Radio Electronics 14 Nauki ave., Kharkiv, Ukraine, 61166

Department “Occupational Safety”

References

  1. Chernyj, A. P., Nikiforov, V. V., Rod'kin, D. I., Nozhenko, V. Ju. (2013). Sovremennoe sostojanie issledovanij vlijanija jelektromagnitnyh izluchenij na organizm cheloveka. Іnzhenernі ta osvіtnі tehnologіi v elektrotehnіchnih і komp’juternih sistemah, 2/2013 (2). Available at: http://eetecs.kdu.edu.ua/2013_02/EETECS2013_0208.pdf
  2. Baranochnykov, M. L. (2001). Maghnytoelektronyka. Vol. 1. Moscow: DMK Press, 544.
  3. Shybkova, D. Z., Ovchynnykova, A. V. (2015). Effekti vozdejstvyja elektromaghnytnikh yzluchenyj na raznikh urovnjakh orghanyzacyy byologhycheskykh system. Uspekhy sovremennogho estestvoznanyja, 5.
  4. Barnes, F. S., Greenebaum, B. (2007). Handbook of Biological Effects of Electromagnetic Fields: Bioengineering and Biophysical Aspects of Electromagnetic Fields. Boca Raton, FL: CRC Press.
  5. Chow, E. Y., Yang, C.-L., Ouyang, Y., Chlebowski, A. L., Irazoqui, P. P., Chappell, W. J. (2011). Wireless Powering and the Study of RF Propagation Through Ocular Tissue for Development of Implantable Sensors. IEEE Transactions on Antennas and Propagation, 59 (6), 2379–2387. doi: 10.1109/tap.2011.2144551
  6. Guy, A. W. (1971). Analyses of Electromagnetic Fields Induced in Biological Tissues by Thermographic Studies on Equivalent Phantom Models. IEEE Transactions on Microwave Theory and Techniques, 19 (2), 205–214. doi: 10.1109/tmtt.1968.1127484
  7. Devjatkov, N. D. (1973) Vlyjanye elektromaghnytnogho yzluchenyja myllymetrovogho dyapazona voln na byologhycheskye obekti. Uspekhy fyzycheskykh nauk, 110 (7), 453–454.
  8. Presman, A. S. (2013). Elektromaghnytnie polja y zhyvaja pryroda. Rypol Klassyk, 33–60.
  9. Jashyn, S. A. (2013). Systema reghystracyy sobstvennikh nyzkoyntensyvnikh elektromaghnytnikh polej na orghanyzm chelvoeka. Vesnyk novikh medycynskykh tekhnologhyj, 20 (3), 158.
  10. Alekandrov, Ju. A., Ostapenko, A. A., Ghenynov, A. V. (2014). Yssledovanye urovnja elektromaghnytnikh yzluchenyj ot nekotorikh tekhnycheskykh ustrojstv. Vesnyk Pryazovskogho ghosudarstvennogho unyversyteta, 28, 188–199.
  11. Almazova, O. B., Jemecj, B. Gh. (2012). Microwave provide a change in the resistance of living organisms to ionizing radiation. Eastern-European Journal of Enterprise Technologies, 4/9 (58), 19–23. Available at: http://journals.uran.ua/eejet/article/view/5737/5169
  12. Fedorovych, S. V. et. al. (2004). Vlyjanye razlychnikh vydov yzluchenyj na zdorovj'e rabotnykov. Problemi obshhestvennogho zdorovjja y zdravookhranenyja, 111.
  13. Krilov, V. A., Juchenkova, T. V. (1976). Zashhyta ot elektromaghnytnikh yzluchenyj. Moscow: Sovetskoe radio, 216.
  14. Ostrovskyj, O. S., Oderenko, E. N., Shmatjko, A. A. (2003). Zashhytnie ekrani y poghlotytely elektromaghnytnikh voln. Fyzycheskaja ynzhenernaja poverkhnostj, 1, 161–172.
  15. Linjkov, L. M., Borush, V. A., Ghlibyn, V. P. et. al.; Linjkov, L. M. (Ed.) (2000). Ghybkye konstrukcyy ekranov elektromaghnytnogho yzluchenyja. Mn., 284.
  16. Performance optimization techniques in analog, mixed-signal, and radio- frequency circuit design (2015). Book Series: Advances in Computer and Electrical Engineering (ACEE), 268.
  17. Hunter, I., Abunjaileh, A., Rhodes, J., Snyder, R., Meng, M. (2012). Propagation and Negative Refraction. IEEE Microwave, 13 (5), 58–65. doi: 10.1109/mmm.2012.2197144
  18. Valanju, P. M., Walser, R. M., Valanju, A. P. (2002). Wave Refraction in Negative-Index Media: Always Positive and Very Inhomogeneous. Physical Review Letters, 88 (18), 187401. doi: 10.1103/physrevlett.88.187401
  19. Borush, V. A., Borbotjko, T. V., Ghusynskyj, A. V. et. al.; Linjklv, P. M. (Ed.) (2003). Elektromaghnytnie yzluchenyja. Metod y sredstva zashhyti. Mn., 398.
  20. Kapura, Y. V., Bakumekno, B. V. (2010). Analyz metodov y sredstv zashhyti radyoelektronnoj apparaturi ot vozdejstvyja moshhnikh elektromaghnytnikh yzluchenyj. Systemi obrabotky ynformacyy, 6, 87–90.
  21. Aleksandrov, Ju. K., Khokhlov, V. M., Tjumeneva, A. S. (2013). Yzmeryteljnoe ustrojstvo dlja opredelenyja elektromaghnytnikh svojstv materyalov v NCh dyapazone elektromaghnytnikh voln. Tekhnologhyja EMS, 2 (45), 35–48.
  22. Poghorelaja, L. M. et. al. (2014) Zashhyta medycynskogho y promishlennogho personala ot vozdejstvyja patoghennikh polej s yspoljzovanyem matrychnogho ekrana. Vestnyk novikh medycynskykh tekhnologhyj, 21 (1).
  23. Linjkov, L. M. et. al. (2004) Novie materyali dlja ekranov elektromaghnytnogho yzluchenyja. Dokladi BghUYR, 2, 152–167.
  24. Wallace, J. L. (1993). Broadband magnetic microwave absorbers: fundamental limitations. IEEE Transactions on Magnetics, 29 (6), 4209–4214. doi: 10.1109/20.280862
  25. Alù, A., Yaghjian, A. D., Shore, R. A., Silveirinha, M. G. (2011). Causality relations in the homogenization of metamaterials. Physical Review B, 84 (5), 1–16. doi: 10.1103/physrevb.84.054305
  26. Hatakeyama, K., Inui, T. (1984). Electromagnetic wave absorber using ferrite absorbing material dispersed with short metal fibers. IEEE Transactions on Magnetics, 20 (5), 1261–1263. doi: 10.1109/tmag.1984.1063424
  27. Landau, L. D., Lyfshyc, E. M. (1959). Elektrodynamyka sploshnikh sred. Moscow: Fyzmatghyz, 532.
  28. Dzjundzjuk, B. V. (1987). Metody rascheta radiopogloshhajushhih materialov. Kharkovskij institut radiojelektroniki, 150.

Published

2016-04-25

How to Cite

Semenets, V., & Stytsenko, T. (2016). A design of radiation-proof material for protecting the medical staff. Eastern-European Journal of Enterprise Technologies, 2(5(80), 30–37. https://doi.org/10.15587/1729-4061.2016.63753