DOI: https://doi.org/10.15587/1729-4061.2016.65036

Development of universal model of kinetics of bioremediation stationary process with substrate inhibition

Anna Bakharevа, Oleksіi Shestopalov, Olesya Filenko, Boris Kobilyansky

Abstract


The results of stationary laboratory experiments are analyzed on the basis of the specific (per unit biomass) degradation rate of environmental pollutants. The presence of substrate inhibition for both gaseous, and water-dissolved pollutants is revealed. The phenomenological approach, which takes into account two obvious phenomena in a simple form: the contact of a microorganism with the substrate molecule and the inhibitory effect of the environment on it is applied to the analytical description of the relationship between the bio-oxidation rate and the pollution concentration. Numerical values of empirical coefficients of relationships for the investigated processes are calculated.

The differential equation, describing the kinetics of biochemical degradation at the macro-level is proposed. The macrokinetic mathematical model of bioremediation is defined as a system of two functions, quantitatively reflecting the  pollutant specific oxidation rate-concentration relationship and the concentration-time relationship, and satisfying the relationship of these parameters in a differential form. The concentration-time relationship is determined in the form of both the numerical integration algorithm and the approximate formula. The relevance and versatility of the proposed model for the investigated processes are proved. The resulting model is the basis for the quantitative description of non-stationary processes in bioreactors.


Keywords


biochemical degradation; specific oxidation rate; macrokinetic model; pollution concentration; phenomenological approach; substrate inhibition

References


Shareefdeen, Z., Herner, B., Webb, D., Wilson, S. (2003). Hydrogen sulfide (H2S) removal in synthetic media biofilters. Environmental Progress, 22 (3), 207–213. doi: 10.1002/ep.670220319

Shareefdeen, Z., Singh, A. (2005). Biotechnology for Odor and Air Pollution Control. Springer, Berlin. doi: 10.1007/b138434

Ménard, C., Ramirez, A. A., Heitz, M. (2013). Kinetics of simultaneous methane and toluene biofiltration in an inert packed bed. Journal of Chemical Technology & Biotechnology, 89 (4), 597–602. doi: 10.1002/jctb.4162

Park, S. Y., Brown, K. W., Thomas, J. C. (2004). The Use of Biofilters to Reduce Atmospheric Methane Emissions from Landfills: Part I. Biofilter Design. Water, Air, & Soil Pollution, 155 (1-4), 63–85. doi: 10.1023/b:wate.0000026522.36984.42

Nelson, M., Bohn, H. L. (2011). Soil-Based Biofiltration for Air Purification:Potentials for Environmental and Space LifeSupport Application. JEP, 2 (8), 1084–1094. doi: 10.4236/jep.2011.28125

Rojo, N., Muñoz, R., Gallastegui, G., Barona, A., Gurtubay, L., Prenafeta-Boldú, F. X., Elías, A. (2012). Carbon disulfide biofiltration: Influence of the accumulation of biodegradation products on biomass development. Journal of Chemical Technology & Biotechnology, 87 (6), 764–771. doi: 10.1002/jctb.3743

Rondeau, A., Mandon, A., Malhautier, L., Poly, F., Richaume, A. (2012). Biopurification of air containing a low concentration of TEX: comparison of removal efficiency using planted and non-planted biofilters. Journal of Chemical Technology & Biotechnology, 87 (6), 746–750. doi: 10.1002/jctb.3730

Andreasen, R. R., Nicolai, R. E., Poulsen, T. G. (2013). Pressure drop in biofilters as related to dust and biomass accumulation. Journal of Chemical Technology & Biotechnology, 88 (4), 733–733. doi: 10.1002/jctb.4049

Papirio, S., Villa-Gomez, D. K., Esposito, G., Pirozzi, F., Lens, P. N. L. (2013). Acid Mine Drainage Treatment in Fluidized-Bed Bioreactors by Sulfate-Reducing Bacteria: A Critical Review. Critical Reviews in Environmental Science and Technology, 43 (23), 2545–2580. doi: 10.1080/10643389.2012.694328

Oturan, M. A., Aaron, J.-J. (2014). Advanced Oxidation Processes in Water/Wastewater Treatment: Principles and Applications. A Review. Critical Reviews in Environmental Science and Technology, 44 (23), 2577–2641. doi: 10.1080/10643389.2013.829765

Zagorskis, A., Vaiškūnaitė, R. (2014). An Investigation on the Efficiency of Air Purification Using a Biofilter with Activated Bed of Different Origin. Chemical and Process Engineering, 35 (4), 435–445. doi: 10.2478/cpe-2014-0033

González-Sánchez, A., Arellano-García, L., Bonilla-Blancas, W., Baquerizo, G., Hernández, S., Gabriel, D., Revah, S. (2014). Kinetic Characterization by Respirometry of Volatile Organic Compound-Degrading Biofilms from Gas-Phase Biological Filters. Industrial & Engineering Chemistry Research, 53 (50), 19405–19415. doi: 10.1021/ie503327f

Shareefdeen, Z., Aidan, A., Ahmed, W., Khatri, M. B., Islam, M., Lecheheb, R., Shams, F. (2010). Hydrogen Sulphide Removal Using a Novel Biofilter Media. World Academy of Science, Engineering and Technology, 62, 13–16.

Shareefdeen, Z. M., Ahmed, W.& Aidan, A. (2011). Kinetics and Modeling of H2S Removal in a Novel Biofilter. Advances in Chemical Engineering and Science, 1 (2), 72–76. doi: 10.4236/aces.2011.12012

Bonilla-Blancas, W., Mora, M., Revah, S., Baeza, J. A., Lafuente, J., Gamisans, X. et. al. (2015). Application of a novel respirometric methodology to characterize mass transfer and activity of H2S-oxidizing biofilms in biotrickling filter beds. Biochemical Engineering Journal, 99, 24–34. doi: 10.1016/j.bej.2015.02.030

Romanovskij, Ju. M., Stepanova, N. V., Chernavskij, D. S. (2003). Matematicheskoe modelirovanie v biofizike. Moscow Izhevsk: Institut komp'juternih issledovanij, 402.

Veillette, M., Ramirez, A. A., Heitz, M. (2012). Biofiltration of air polluted with methane at concentration levels similar to swine slurry emissions: Influence of ammonium concentration. Journal of Environmental Science and Health, Part A, 47 (7), 1053–1064. doi: 10.1080/10934529.2012.667327

Surerus, V., Giordano, G., Teixeira, L. A. C. (2014). Activated sludge inhibition capacity index. Brazilian Journal of Chemical Engineering, 31 (2), 385–392. doi: 10.1590/0104-6632.20140312s00002516

Krichkovska, L. V., Vaskovez, L. A., Gurenko, I. V. et. al. (2014). Proektni rishennya u rozrobzi aparativ biologichnoy ochistki gazopovitryanih vikidiv. Kharkіv: NTU «KhPI», 208.

Baharеva, А. Yu., Shestopalov, O. V., Semenov, E. O., Bukatenko, N. O. (2015). Macrokinetic mathematical model development of biological treatment process of gasiform emissions. ScienceRise, 2/2 (7), 12–15. doi: 10.15587/2313-8416.2015.37057


GOST Style Citations


1. Shareefdeen, Z. Hydrogen Sulphide (H2S) Removal in Synthetic Media Biofilters [Text] / Z. Shareefdeen, B. Herner, D. Webb and S. Wilson // Environmental Progress. – 2003. – Vol. 22, Issue 3. – P. 207–213. doi: 10.1002/ep.670220319 

2. Shareefdeen, Z. Biotechnology for Odor and Air Pollution Control [Text] / Z. Shareefdeen, A. Singh. – Springer, Berlin, 2005. doi: 10.1007/b138434

3. Ménard, C. Kinetics of simultaneous methane and toluene biofiltration in an inert packed bed [Text] / C. Ménard, A. A. Ramirez, M. Heitz // Journal of Chemical Technology and Biotechnology. – 2014. – Vol. 89, Issue 4. – P. 597–602. doi: 10.1002/jctb.4162 

4. Park, S. Y. The Use of Biofilters to Reduce Atmospheric Methane Emissions from Landfills: Part 1, Biofilter Design [Text] / S. Y. Park, K. W. Brown and J. C. Thomas // Water, Soil and Air Pollution. – 2004. – Vol. 155, Issue 1-4. – P. 63–85. doi: 10.1023/b:wate.0000026522.36984.42 

5. Nelson, M. Soil-Based Biofiltration for Air Purification:Potentials for Environmental and Space LifeSupport Application [Text] / M. Nelson, H. Bohn // Journal of Environmental Protection. – 2011. – Vol. 2, Issue 8. – P. 1084–1094. doi: 10.4236/jep.2011.28125 

6. Rojo, N. Carbon disulfide biofiltration: Influence of the accumulation of biodegradation products on biomass development [Text] / N. Rojo, R. Muñoz, G. Gallastegui, A. Barona, L. Gurtubay, F. X. Prenafeta-Boldú, A. Elías // Journal of Chemical Technology and Biotechnology. – 2012. – Vol. 87, Issue 6. – P. 764–771. doi: 10.1002/jctb.3743 

7. Rondeau, A. Biopurification of air containing a low concentration of TEX: comparison of removal efficiency using planted and non-planted biofilters [Text] / A. Rondeau, A. Mandon, L. Malhautier, F. Poly, A. Richaume // Journal of Chemical Technology & Biotechnology. – 2012. – Vol. 87, Issue 6. – P. 746–750. doi: 10.1002/jctb.3730 

8. Andreasen, R. R. Pressure drop in biofilters as related to dust and biomass accumulation [Text] / R. R. Andreasen, R. E. Nicolai, T. G. Poulsen // Journal of Chemical Technology and Biotechnology. – 2012. – Vol. 87, Issue 6. – P. 806–816. doi: 10.1002/jctb.4049 

9. Papirio, S. Acid Mine Drainage Treatment in Fluidized-Bed Bioreactors by Sulfare-Reducing Bacteria: A Critical Review [Text] / S. Papirio, D. K. Villa-Gomez, G. Esposito, F. Pirozzi, P. N. L. Lens // Critical Reviews in Environmental Science and Technology. – 2013. – Vol. 43, Issue 23. – P. 2545–2580. doi: 10.1080/10643389.2012.694328 

10. Oturan, M. A. Advanced Oxidation Processes in Water/Wastewater Treatment: Principles and Applications. A Review [Text] / M. A. Oturan, J.-J. Aaron // Critical Reviews in Environmental Science and Technology. – 2014. – Vol. 44, Issue 23. – P. 2577–2641. doi: 10.1080/10643389.2013.829765 

11. Zagorskis, A. An Investigation on the Efficiency of Air Purification Using a Biofilter with Activated Bed of Different Origin [Text] / A. Zagorskis, R. Vaiškūnaitė // Chemical and Process Engineering. – 2014. – Vol. 35, Issue 4. – P. 435–445. doi: 10.2478/cpe-2014-0033 

12. González-Sánchez, A. Kinetic Characterization by Respirometry of Volatile Organic Compound-Degrading Biofilms from Gas-Phase Biological Filters [Text] / A. González-Sánchez, L. Arellano-García, W. Bonilla-Blancas, G. Baquerizo, S. Hernández, D. Gabriel, S. Revah // Industrial & Engineering Chemistry Research. – 2014. – Vol. 53, Issue 50. – P. 19405–19415. doi: 10.1021/ie503327f 

13. Shareefdeen, Z. Hydrogen Sulphide Removal Using a Novel Biofilter Media [Text] / Z. Shareefdeen, A. Aidan, W. Ahmed, M. B. Khatri, M. Islam, R. Lecheheb. F. Shams // World Academy of Science, Engineering and Technology. – 2010. – Vol. 62. – P. 13–16.

14. Shareefdeen, Z. Kinetics and Modeling of H2S Removal in a Novel Biofilter [Text] / Z. Shareefdeen, A. Aidan, W. Ahmed // Advances in Chemical Engineering and Science. – 2011. – Vol. 1, Issue 2. – P. 72–76. doi: 10.4236/aces.2011.12012 

15. Bonilla-Blancas, W. Application of a novel respirometric methodology to characterize mass transfer and activity of H2S-oxidizing biofilms in biotrickling filter beds [Text] / W. Bonilla-Blancas, M. Mora, S. Revah, J. A. Baeza, J. Lafuente, X. Gamisans et. al. // Biochemical Engineering Journal. – 2015. – Vol. 99. – P. 24–34 doi: 10.1016/j.bej.2015.02.030 

16. Романовский, Ю. М. Математическое моделирование в биофизике [Текст] / Ю.М. Романовский, Н. В.Степанова, Д. С. Чернавский. – Москва Ижевск: Институт компьютерных исследований, 2003. – 402 с.

17. Veillette, M. Biofiltration of air polluted with methane at concentration levels similar to swine slurry emissions: influence of ammonium concentration [Text] / M. Veillette, A. A. Ramirez, M. Heitz // Journal of Environmental Science and Health, Part A. – 2012. – Vol. 47, Issue 7. – P. 1053–1064. doi: 10.1080/10934529.2012.667327 

18. Surerus, V. Activated sludge inhibition capacity index [Text] / V. Surerus, G. Giordano, L. A. C. Teixeira // Brazilian Journal of Chemical Engineering. – 2014. – Vol. 31, Issue 2. – P. 385–392. doi: 10.1590/0104-6632.20140312s00002516 

19. Кричковська, Л. В. Проектні рішення у розробці апаратів біологічної очистки газоподібних викидів [Текст]: монографія / Л. В. Кричковська, Л. А. Васьковець, І. В. Гуренко та ін.; за ред. Л. В. Кричковської. – Харків: НТУ «ХПІ», 2014. – 208 с.

20. Бахарєва, Г. Ю. Розробка макрокінетичної моделі процесу біологічної очистки газоповітряних сумішей [Текст] / Г. Ю. Бахарєва, О. В. Шестопалов, Є. О. Семенов, Н. О. Букатенко // ScienceRise. – 2015. – Т. 2, № 2 (7) – С. 12–15. doi: 10.15587/2313-8416.2015.37057







Copyright (c) 2016 Anna Bakharevа, Oleksіi Shestopalov, Olesya Filenko, Boris Kobilyansky

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061