On the possibility of applying modern design solutions of ocean-technical constructions for the Azov sea shelf

Authors

DOI:

https://doi.org/10.15587/1729-4061.2016.65264

Keywords:

ocean technical construction, the shelf of the Azov-Black Sea basin, ice resistant platforms, architectural-construction type

Abstract

Achieving energy independence is one of the most important issues of modern Ukraine. Solution of this problem is impossible without the exploration of the shelf of the Azov-Black Sea basin; therefore development and design of ocean-technical constructions for the hydrocarbon raw materials exploration in the conditions of the Black and Azov Seas is the main step. In this article we examine selection of the architectural-construction type of an ocean technical construction, taking into account the ice loads, characteristic for the Azov Sea basin. A neural network analysis was perormed of the forecast of the thickness of ice in winter period and the ice loads on several types of constructions were calculated. As a result of the calculations it was revealed that under the considered conditions, the most suitable type of construction is an ice resistant stationary platform of gravitational type, which includes an extended structure with inclined front face at the level (depth) of sea of 8,0 m, and at the depth of 12,0 m is an extended structure with a combination of inclined sections and vertical parts of the columns on the front face.

Performed calculations are also important from the point of view of the decrease of technological works and consumption of materials during construction, since we applied real physical values of ice formations, not the maximal ones registered over 100 years.

Author Biography

Anastasiia Zaiets, Odessa National Maritime University Mechnikova str., 34, Odessa, Ukraine, 65000

Assistant

Department of ship theory and design department

References

  1. Fedorenko, A. V. (2009). Osobennosti ledovogo sezona 2007–2008 gg. na Azovskom more. Trudy Gidromettsentra Rossii, 343, 88–99.
  2. Borovskaya, R. V. (2012). Osobennosti ledovykh usloviy Azovskogo morya v zimniy period 2011 – 2012 gg. Sistemy kontrolya okruzhayushchey sredy, 17, 123–127.
  3. D'yakov, N. N., Timoshenko, T. U., Belogudov, A. A. (2013). Sovremennyye izmeneniya ledovitosti Azovskogo morya. Geoinformatsionnyye nauki i ekologicheskoye razvitiye: novyye podkhody, metody, tekhnologii, 2, 77–82.
  4. ISO 19906:2010 (2010). Petroleum and natural gas industries. Arctic offshore structures, 474.
  5. Pravila klassifikatsii, postroyki i oborudovaniya plavuchikh burovykh ustanovok i morskikh statsionarnykh platform (2014). Rossiyskiy morskoy registr sudokhodstva, 483.
  6. Loset, S., Shkhinek, K. N., Gumestad, O., Khoyland, K. (2010). Vozdeystviye l'da na morskiye beregovyye sooruzheniya. SPb: Izd–vo «Lan'», 272.
  7. API RP 2N (1995). Recommended practice for planning, designing and constructing structures and pipelines for Arctic conditions. Amer: Petroleum Inst. Bulletin, Dallas, 435.
  8. Yedinaya gosudarstvennaya sistema informatsii ob obstanovke v mirovom okeane. Operativnyy modul' YESIMO. Available at: http://193.7.160.230/web/esimo/azov/ice/ice_azov.php
  9. Yang, Y., Wang, Y., Li, R., Liu, N., Wang, X., Zou X. (2012). Dynamic Response Analysis of an Offshore Gravity Platform under Ice Load. EJGE, 685–698.
  10. Uvarova, T. E., Pomnikov, E. E., Shamsutdinova, G. R., Narkevich, A. S., Protsenko, V. V. (2012). Normative procedures of global ice loads calculation. Vestnik MGSU, 10, 122–127.
  11. Marchenko, A. (2010). Modelling of Ice Piling up Near Offshore Structures. 20th IAHR International Symposium on Ice, 286–298.
  12. Hirdarisa, S. E., Baib, W., Dessic, D., Ergind, A., Gue, X., Hermundstadf, O. A. et. al. (2014). Loads for use in the design of ships and offshore structures. Ocean Engineering, 78, 131–174.
  13. Li, L., Shkhinek, S. N. (2014). Dynamic Interaction between Ice and Inclined Structure. Magazine of Civil Engineering, 45 (1), 71–79. doi: 10.5862/mce.45.8
  14. Ziemer, G., Evers, K.-U., Voosen, Chr. (2015). Influence of Structural Compliance and Slope Angle on Ice Loads and Dynamic Response of Conical Structures. ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering, 8, 37–44. doi: 10.1115/omae2015-41769
  15. Kim, E., Amdahl, J. (2016). Discussion of assumptions behind rule-based ice loads due to crushing. Ocean Engineering, 119, 249–261. doi: 10.1016/j.oceaneng.2015.09.034
  16. Zayets, A. Yu., Kramar', V. A. (2014). Garantosposobnost' okeanotekhnicheskikh system. Naukovo-tekhníchnchiy zhurnal Radíoyelektronní í komp’yuterní sistemi, 6 (70), 7–11.
  17. Dushko, V. R., Kramar', V. A., Al'chakov, V. V., Lopatneva, A. Yu. (2014). Mnogofaktornyy podkhod dlya rascheta ledovykh nagruzok s pomoshch'yu neyronnoy seti. Sovremennyye problemy prikladnoy matematiki, informatiki, avtomatizatsii i upravleniya, 145–150.
  18. Khalikova, D. F., Timofeyev, O. Ya., Krupnov, G. K. (2011). Metodika opredeleniya arkhitekturno – konstruktivnogo tipa i glavnykh razmerennoy SPBU dlya bureniya poiskovo–razvedochnykh skvazhin v usloviyakh melkovod'ya. RAO/CIS Offshore, 493–498.
  19. Adamyants, P. P., Guseynov, Ch. S., Ivanets, V. K. (2005). Proyektirovaniye obustroystva morskikh neftegazovykh mestorozhdeniy. Moscow: OOO «TsentrLitNefteGaz», 496.
  20. Bekker, A. T. (2004). Veroyatnostnyye kharakteristiki ledovykh nagruzok na sooruzheniya kontinental'nogo shel'fa. Vladivostok: Dal'naukayu, 346.
  21. Guseynov, Ch. S., Musabirov, A. A. (2012). Osvoyeniye melkovodnykh neftegazovykh mestorozhdeniy arkticheskogo shel'fa s ispol'zovaniyem ledostoykoy statsionarnoy platformy na monoopore. Sovremennyye tekhnologii osvoyeniya mestorozhdeniy uglevodorodov na sushe i more. «GEOPETROL' – 2012», 851–852.
  22. Musabirov, A. A. (2012). Proyektirovaniye morskoy ledostoykoy samopod"yomnoy platformy dlya zamerzayushchego melkovod'ya. Trudy Rossiyskogo gosudarstvennogo universiteta nefti i gaza imeni I. M. Gubkina, 1, 60–66.
  23. Vyakhirev, R. I., Nikitin, B. A., Mirzoyev, D. A. (1999). Obustroystvo i osvoyeniye morskikh neftegazovykh mestorozhdeniy. Moscow: Izdatel'stvo Akademii gornykh nauk, 373.
  24. Opredeleniye global'nykh ledovykh nagruzok na ledostoykuyu statsionarnuyu platformu (LSP) na baze BPNK «Shel'f-7» na osnove model'nykh ispytaniy v ledovom opytovom basseyne (2005). Nauchno tekhnicheskiy otchet, 75.
  25. Opredeleniye global'nykh ledovykh nagruzok na statsionarnyy morskoy ledostoykiy otgruzochnyy prichal na osnove model'nykh ispytaniy v ledovom opytovom basseyne (2005). Nauchno tekhnicheskiy otchet, 50.
  26. Kos'yan, R. D. (2013). Nauchnoye obespecheniye sbalansirovannogo planirovaniya khozyaystvennoy deyatel'nosti na unikal'nykh morskikh beregovykh landshaftakh i predlozheniya po yego ispol'zovaniyu na primere Azovo-Chernomorskogo poberezh'ya. Federal'noye gosudarstvennoye byudzhetnoye uchrezhdeniye nauki Institut okeanologii im. P. P. Shirshova. Rossiyskoy akademii nauk (IO RAN), 1103–1317.
  27. ISO 19906:2010 (2010). Appendix B. Petroleum and natural gas industries. Arctic offshore structures, 102.
  28. Wise, J. L., Comisky, A. L. (1980). Superstructure icing in Alaskan waters, Environmental Research Laboratories. Special Report, US NOAA, Boulder, USA.
  29. Weeks, W. F., Ackley, S. F. (1982). The Growth, Structure and Properties of Sea Ice. USA CRREL Monograph 82-1, Hanover, USA.

Downloads

Published

2016-06-30

How to Cite

Zaiets, A. (2016). On the possibility of applying modern design solutions of ocean-technical constructions for the Azov sea shelf. Eastern-European Journal of Enterprise Technologies, 3(7(81), 62–70. https://doi.org/10.15587/1729-4061.2016.65264

Issue

Section

Applied mechanics