The brandon method in modelling the cavitation processing of aqueous media
DOI:
https://doi.org/10.15587/1729-4061.2016.72539Keywords:
cavitation, flotation, hydrodynamic jet cavitator, multiplicative mathematical model, the Brandon methodAbstract
A 4-factor multiplicative mathematical model was built in order to find the best mode of cavitation processing of aqueous media, in which the value of heat energy released during cavitation is maximal. The model links the heat energy value with technological (inlet pressure in the cavitator) and design (nozzle diametre, the number of nozzles, the angle of attack jets) parametres. The adequacy of the derived regression equation is confirmed by the Fisher criterion (F<FT=0.203<1.51). The accuracy of the model has been assessed by the coefficient of determination and the mean relative error of approximation (eMRE=5.85 %). The analysis of the 4-factor multiplicative model allowed finding the optimal conditions for cavitation processing of liquid-phase media; they are as follows: inlet pressure – 0.54–0.6 MPa, nozzle diametre – 1.6 mm, the number of nozzles – 4–5, and the angle of attack jets – 144–170 degrees. It is found that, in comparison with the absence of air, the content of air of 2±0.25 % by the volume of an aqueous medium greatly intensifies the formation of the “flotation” layer (its height, dispersibility of bubbles, and gas saturation). The derived multifunctional dependence allows controlling the effectiveness of cavitation processing of aqueous media by means of changing the design parametres of cavitating parts.
References
- Heletukha, H. H., Zhelyezna, T. A., Prakhovnik, A. K. (2015). Analiz enerhetychnykh stratehiy krayin YeS ta svitu i roli v nykh vidnovlyuvanykh dzherel enerhiyi. Analitychna zapyska BAU, 13, 35. Available at: http://www.uabio.org/img/files/docs/uabio-position-paper-13-ua.pdf
- Gogate, P. R., Tayal, R. K., Pandit, A. B. (2006). Cavitation: a technology on the horizon. Current Science, 91 (1), 35–46.
- Doosti, M. R., Kargar, R., Sayadi, M. H. (2012). Water treatment using ultrasonic assistance: a review. Proceedings of the International Academy of Ecology and Environmental Sciences, 2 (2), 96–110.
- Chakinala, A. G., Gogate, P. R., Burgess, A. E., Bremner, D. H. (2009). Industrial wastewater treatment using hydrodynamic cavitation and heterogeneous advanced Fenton processing. Chemical Engineering Journal, 152 (2-3), 498–502. doi: 10.1016/j.cej.2009.05.018
- Nukenov, D. (2014). Metody povysheniya koeffitsiyenta izvlecheniya nefti. Heoinformatyka, 1 (49), 19–24.
- Ovchinnikov, Yu. V., Lutsenko, S. V. (2008). Isskusstvennoe kompozitsionnoe zhidkoe toplivo i eho prihotovlenie. Enerhetika Tatarstana, 4, 11–15.
- Caupin, F., Herbert, E. (2006). Cavitation in water: a review. Comptes Rendus Physique, 7 (9-10), 1000–1017. doi: 10.1016/j.crhy.2006.10.015
- Ashokkumar, M., Rink, R., Shestakov, S. (2011). Hydrodynamic cavitation – an alternative to ultrasonic food processing. Electronic Journal, 9, 10. Available at: https://cyberleninka.ru/article/n/gidrodinamicheskaya-kavitatsiya-alternativa-ultrazvukovoy-pri-proizvodstve-pischevyh-produktov
- Znak, Z. O., Sukhats’kyi, Yu. V., Mnykh, R. V. (2014). Doslidzhennya zalezhnosti efektyvnosti roboty hidrodynamichnoho strumenevoho kavitatora vid konstruktyvnykh parametriv kavituval’noho elementa. Vibratsiyi v tekhnitsi ta tekhnolohiyakh, 2 (78), 18–26.
- Jablonska, Ja., Bojko, M. (2015). Multiphase flow and cavitation – comparison of flow in rectangular and circular nozzle. EPJ Web of Conferences, 92, 02028. Available at: http://www.epj-conferences.org/articles/epjconf/pdf/2015/11/epjconf_efm2014_02028.pdf doi: 10.1051/epjconf/20159202028
- Zhang, Sh., Tao, X., Lu, J. et. al. (2015). Structure optimization and numerical simulation of nozzle for high pressure water jetting. Advances in Materials Science and Engineering, 8. Available at: http://www.hindawi.com/journals/amse/2015/732054/ doi: 10.1155/2015/732054
- Gulyi, A., Kobyzska, A. (2012). Pumping equipment effectiveness increase by means of ejector application as preliminary stage for high-speed pump units. MOTROL, 14 (1), 158–163.
- Bodnárová, L., Sitek, L., Hela, R., Foldyna, J. (2011). New potentional of high-speed water jet technology for renovating concrete structures. Slovak Journal of Civil Engineering, XIX (2), 1–7. doi: 10.2478/v10189-011-0006-z
- Tarasenko, T. V. (2013). Doslidzhennya kavitatsiynykh yavyshch u drosel’nykh prystroyakh. Promyslova gidravlika i pnevmatyka, 1 (39), 38–46.
- Anisimov, V. V., Holovenko, V. O., Yermakov, P. P. (2013). Kavitatsiyna tekhnolohiya syntezu metylovykh efiriv zhyrnykh kyslot z zhyriv roslynnoho pokhodzhennya. Voprosy khimii i khimicheskoy tekhnolohii, 6, 125–127.
- Denisyuk, E. A., Nosova, I. A. (2012). Optimizatsiya enerhoemkosti pri reheneratsii otrabotannoho rassola. Vestnik NHIEI, 12 (19), 47–53.
- Kletter, V. Yu., Lind, Yu. B. (2007). Matematicheskoe modelirovanie burovykh rastvorov. VIII Vserossiyskaya konferentsiya molodykh uchenykh po matematicheskomu modelirovaniyu i informatsionnym tekhnolohiyam. Novosibirsk. Available at: http://www.ict.nsc.ru/ws/YM2007/12715/kettler.htm.
- Mysak, V. F. (2009). Metody identyfikatsiyi statychnykh kharakterystyk ob’’yektiv keruvannya. Kyiv: NTU KPI, 62.
- Klymenko, V. V., Lychuk, M. V., Bosyi, M. V. (2013). Zastosuvannya metodu Brandona dlya otrymannya empirychnoho rivnyannya kinetyky protsesu hidratoutvorennya. Kholodyl’na tekhnika ta tekhnolohiya, 5, 59–63.
- Het’man, H. K., Marikutsa, S. L. (2011). Analiz analitychnykh funktsiy dlya aproksymatsiyi universal’noyi mahnitnoyi kharakterystyky tyahovykh dvyhuniv postiynoho ta pul’suyuchoho strumu. Visnyk Dnipropetrovs’koho natsional’noho universytetu zaliznychnoho transportu imeni akademika V. Lazaryana, 37, 63–71.
- Holykh, R. N. (2014). Povyshenie effektivnosti ul’trazvukovoho kavitatsionnoho vozdeystviya na khimiko-tekhnolohicheskie protsessy v heterohennykh systemakh s nesushchey vysokovyazkoy ili nen’yutonovskoy zhydkoy fazoy. Biysk, 188.
- Spiridonov, A. A. (1981). Planirovanie eksperimenta pri issledovanii tekhnolohicheskikh protsessov. Moscow: Mashinostroenie, 184.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Зеновій Орестович Знак, Yuriy Sukhatskiy
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.