The brandon method in modelling the cavitation processing of aqueous media

Authors

DOI:

https://doi.org/10.15587/1729-4061.2016.72539

Keywords:

cavitation, flotation, hydrodynamic jet cavitator, multiplicative mathematical model, the Brandon method

Abstract

A 4-factor multiplicative mathematical model was built in order to find the best mode of cavitation processing of aqueous media, in which the value of heat energy released during cavitation is maximal. The model links the heat energy value with technological (inlet pressure in the cavitator) and design (nozzle diametre, the number of nozzles, the angle of attack jets) parametres. The adequacy of the derived regression equation is confirmed by the Fisher criterion (F<FT=0.203<1.51). The accuracy of the model has been assessed by the coefficient of determination and the mean relative error of approximation  (eMRE=5.85 %). The analysis of the 4-factor multiplicative model allowed finding the optimal conditions for cavitation processing of liquid-phase media; they are as follows: inlet pressure – 0.54–0.6 MPa, nozzle diametre – 1.6 mm, the number of nozzles – 4–5, and the angle of attack jets – 144–170 degrees. It is found that, in comparison with the absence of air, the content of air of 2±0.25 % by the volume of an aqueous medium greatly intensifies the formation of the “flotation” layer (its height, dispersibility of bubbles, and gas saturation). The derived multifunctional dependence allows controlling the effectiveness of cavitation processing of aqueous media by means of changing the design parametres of cavitating parts.

Author Biographies

Zenoviy Znak, Lviv Polytechnic National University Stepan Bandera str.,12, Lviv, Ukraine, 79013

Doctor of Technical Sciences, Professor

Department of Chemistry and Technology of Inorganic Substances

Yuriy Sukhatskiy, Lviv Polytechnic National University Stepan Bandera str.,12, Lviv, Ukraine, 79013

Postgraduate student

Department of Chemistry and Technology of Inorganic Substances

References

  1. Heletukha, H. H., Zhelyezna, T. A., Prakhovnik, A. K. (2015). Analiz enerhetychnykh stratehiy krayin YeS ta svitu i roli v nykh vidnovlyuvanykh dzherel enerhiyi. Analitychna zapyska BAU, 13, 35. Available at: http://www.uabio.org/img/files/docs/uabio-position-paper-13-ua.pdf
  2. Gogate, P. R., Tayal, R. K., Pandit, A. B. (2006). Cavitation: a technology on the horizon. Current Science, 91 (1), 35–46.
  3. Doosti, M. R., Kargar, R., Sayadi, M. H. (2012). Water treatment using ultrasonic assistance: a review. Proceedings of the International Academy of Ecology and Environmental Sciences, 2 (2), 96–110.
  4. Chakinala, A. G., Gogate, P. R., Burgess, A. E., Bremner, D. H. (2009). Industrial wastewater treatment using hydrodynamic cavitation and heterogeneous advanced Fenton processing. Chemical Engineering Journal, 152 (2-3), 498–502. doi: 10.1016/j.cej.2009.05.018
  5. Nukenov, D. (2014). Metody povysheniya koeffitsiyenta izvlecheniya nefti. Heoinformatyka, 1 (49), 19–24.
  6. Ovchinnikov, Yu. V., Lutsenko, S. V. (2008). Isskusstvennoe kompozitsionnoe zhidkoe toplivo i eho prihotovlenie. Enerhetika Tatarstana, 4, 11–15.
  7. Caupin, F., Herbert, E. (2006). Cavitation in water: a review. Comptes Rendus Physique, 7 (9-10), 1000–1017. doi: 10.1016/j.crhy.2006.10.015
  8. Ashokkumar, M., Rink, R., Shestakov, S. (2011). Hydrodynamic cavitation – an alternative to ultrasonic food processing. Electronic Journal, 9, 10. Available at: https://cyberleninka.ru/article/n/gidrodinamicheskaya-kavitatsiya-alternativa-ultrazvukovoy-pri-proizvodstve-pischevyh-produktov
  9. Znak, Z. O., Sukhats’kyi, Yu. V., Mnykh, R. V. (2014). Doslidzhennya zalezhnosti efektyvnosti roboty hidrodynamichnoho strumenevoho kavitatora vid konstruktyvnykh parametriv kavituval’noho elementa. Vibratsiyi v tekhnitsi ta tekhnolohiyakh, 2 (78), 18–26.
  10. Jablonska, Ja., Bojko, M. (2015). Multiphase flow and cavitation – comparison of flow in rectangular and circular nozzle. EPJ Web of Conferences, 92, 02028. Available at: http://www.epj-conferences.org/articles/epjconf/pdf/2015/11/epjconf_efm2014_02028.pdf doi: 10.1051/epjconf/20159202028
  11. Zhang, Sh., Tao, X., Lu, J. et. al. (2015). Structure optimization and numerical simulation of nozzle for high pressure water jetting. Advances in Materials Science and Engineering, 8. Available at: http://www.hindawi.com/journals/amse/2015/732054/ doi: 10.1155/2015/732054
  12. Gulyi, A., Kobyzska, A. (2012). Pumping equipment effectiveness increase by means of ejector application as preliminary stage for high-speed pump units. MOTROL, 14 (1), 158–163.
  13. Bodnárová, L., Sitek, L., Hela, R., Foldyna, J. (2011). New potentional of high-speed water jet technology for renovating concrete structures. Slovak Journal of Civil Engineering, XIX (2), 1–7. doi: 10.2478/v10189-011-0006-z
  14. Tarasenko, T. V. (2013). Doslidzhennya kavitatsiynykh yavyshch u drosel’nykh prystroyakh. Promyslova gidravlika i pnevmatyka, 1 (39), 38–46.
  15. Anisimov, V. V., Holovenko, V. O., Yermakov, P. P. (2013). Kavitatsiyna tekhnolohiya syntezu metylovykh efiriv zhyrnykh kyslot z zhyriv roslynnoho pokhodzhennya. Voprosy khimii i khimicheskoy tekhnolohii, 6, 125–127.
  16. Denisyuk, E. A., Nosova, I. A. (2012). Optimizatsiya enerhoemkosti pri reheneratsii otrabotannoho rassola. Vestnik NHIEI, 12 (19), 47–53.
  17. Kletter, V. Yu., Lind, Yu. B. (2007). Matematicheskoe modelirovanie burovykh rastvorov. VIII Vserossiyskaya konferentsiya molodykh uchenykh po matematicheskomu modelirovaniyu i informatsionnym tekhnolohiyam. Novosibirsk. Available at: http://www.ict.nsc.ru/ws/YM2007/12715/kettler.htm.
  18. Mysak, V. F. (2009). Metody identyfikatsiyi statychnykh kharakterystyk ob’’yektiv keruvannya. Kyiv: NTU KPI, 62.
  19. Klymenko, V. V., Lychuk, M. V., Bosyi, M. V. (2013). Zastosuvannya metodu Brandona dlya otrymannya empirychnoho rivnyannya kinetyky protsesu hidratoutvorennya. Kholodyl’na tekhnika ta tekhnolohiya, 5, 59–63.
  20. Het’man, H. K., Marikutsa, S. L. (2011). Analiz analitychnykh funktsiy dlya aproksymatsiyi universal’noyi mahnitnoyi kharakterystyky tyahovykh dvyhuniv postiynoho ta pul’suyuchoho strumu. Visnyk Dnipropetrovs’koho natsional’noho universytetu zaliznychnoho transportu imeni akademika V. Lazaryana, 37, 63–71.
  21. Holykh, R. N. (2014). Povyshenie effektivnosti ul’trazvukovoho kavitatsionnoho vozdeystviya na khimiko-tekhnolohicheskie protsessy v heterohennykh systemakh s nesushchey vysokovyazkoy ili nen’yutonovskoy zhydkoy fazoy. Biysk, 188.
  22. Spiridonov, A. A. (1981). Planirovanie eksperimenta pri issledovanii tekhnolohicheskikh protsessov. Moscow: Mashinostroenie, 184.

Downloads

Published

2016-06-29

How to Cite

Znak, Z., & Sukhatskiy, Y. (2016). The brandon method in modelling the cavitation processing of aqueous media. Eastern-European Journal of Enterprise Technologies, 3(8(81), 37–42. https://doi.org/10.15587/1729-4061.2016.72539

Issue

Section

Energy-saving technologies and equipment