Decision support system’s concept for design of combined propulsion complexes

Authors

DOI:

https://doi.org/10.15587/1729-4061.2016.72543

Keywords:

ship power installation, propulsive complex, simulation, power transfer process, decision-making

Abstract

It is shown that there are many mathematical models (MM) of ship power plants for various purposes. Such MM are integrated into decision support systems (DSS) and used in the design and power optimization of ship power plants (SPP) of various constructional configurations. Experimental research and scientific literature analysis prove that such integrated MM into DSS are not always adequate to real physical processes in some modes, for example, dynamic ship positioning.

That is why integrated MM SPP into DSS need clarification as well as the existing DSS need further development.

The approach for the creation of specialized DSS SPP of the ship combined propulsive complexes (CPC) is proposed, which allows predicting the number and type of thrusters (T), pods, power system, and does not require the application of similarity criteria, allows a multiple analysis of the structure at minimal initial data.

The designed DSS applies the principles of the construction of DMI-models ships and methods of implementation of characteristic spatial vectors of power processes, gives a possibility to synthesize recommendations to T designers, controllers and power systems for ships operating in the dynamic positioning modes.  Created DSS can be used practically for any type of vessels and adapted for the modes of dynamic ship positioning.

It is established for a given rotation speed of the pods, traction, torque and stepper ratio with the help of created DSS, that traction coefficient grows with the change in mutual location of T relative to each another and diametrical plane of the vessel. It is proved that the interelation of thrusts coefficients are correlated better with the power coefficients than with the stepping  pods coefficients, allowing  increasing energy efficiency of SPP CPC in the dynamic positioning modes.

The results of the research can be implemented into data bases of similar DSS and provide researchers with verified information needed for creation of new concepts of SPP CPC design for modification of existing systems. 

Author Biographies

Vitaliy Budashko, National University «Odessa Maritime Academy» Didrikhson str., 8, Odessa, Ukraine, 65029

PhD, Associate Professor

Department of Тechnical fleet operation

Vitaliy Nikolskyi, National University «Odessa Maritime Academy» Didrikhson str., 8, Odessa, Ukraine, 65029

Doctor of Technical Science, Professor

Department of theory of automatic control and computer engineering

Oleg Onishchenko, National University «Odessa Maritime Academy» Didrikhson str., 8, Odessa, Ukraine, 65029

Doctor of Technical Science, Professor

Department of Тechnical fleet operation

Sergii Khniunin, National University Odessa Maritime Academy Didrikhson str., 8, Odessa, Ukraine, 65029

Senior lecturer

Department of theory of automatic control and computer engineering

References

  1. Shim, J. P., Warkentin, M., Courtney, J. F., Power, D. J., Sharda, R., Carlsson, C. (2002). Past, present, and future of decision support technology. Decision Support Systems, 33 (2), 111–126. doi: 10.1016/s0167-9236(01)00139-7
  2. Brezina, A., Thomas, S. (2013). Measurement of Static and Dynamic Performance Characteristics of Electric Propulsion Systems. 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. doi: 10.2514/6.2013-500
  3. Tsekouras, G. J., Kanellos, F. D., Prousalidis, J. (2015). Simplified method for the assessment of ship electric power systems operation cost reduction from energy storage and renewable energy sources integration. IET Electrical Systems in Transportation, 5 (2), 61–69. doi: 10.1049/iet-est.2013.0011
  4. Grace Haaf, C., Michalek, J. J., Ross Morrow, W., Liu, Y. (2014). Sensitivity of Vehicle Market Share Predictions to Discrete Choice Model Specification. Journal of Mechanical Design, 136 (12), 121402. doi: 10.1115/1.4028282
  5. Pereira, F. C., Rodrigues, F., Ben-Akiva, M. (2013). Text analysis in incident duration prediction. Transportation Research Part C: Emerging Technologies, 37, 177–192. doi: 10.1016/j.trc.2013.10.002
  6. Cwilewicz, R., Górski, Z. (2014). Prognosis of marine propulsion plants development in view of new requirements concerning marine fuels. Journal of KONES. Powertrain and Transport, 21 (2), 61–68. doi: 10.5604/12314005.1133866
  7. Scherer, T., Cohen, J. (2011). The Evolution of Machinery Control Systems Support At the Naval Ship Systems Engineering Station. Naval Engineers Journal, 123 (2), 85–109. doi: 10.1111/j.1559-3584.2011.00321.x
  8. Yutao, C., Fanming, Z., Jiaming, W. (2012). Integrated Design Platform for Marine Electric Propulsion System. Energy Procedia, 17, 540–546. doi: 10.1016/j.egypro.2012.02.133
  9. Vrijdag, A. (2014). Estimation of uncertainty in ship performance predictions. Journal of Marine Engineering & Technology, 13 (3), 45–55. doi: 10.1080/20464177.2014.11658121
  10. Jutao, C., Huayao, Z., Aibing, Y. (2008). Design and implementation of Marine Electric Propulsion Dynamic Load Simulation System. 2008 3rd IEEE Conference on Industrial Electronics and Applications, 483–488. doi: 10.1109/iciea.2008.4582562
  11. Bucknall, R. W. G., Ciaramella, K. M. (2010). On the Conceptual Design and Performance of a Matrix Converter for Marine Electric Propulsion. IEEE Trans. Power Electron., 25 (6), 1497–1508. doi: 10.1109/tpel.2009.2037961
  12. Peters, S., Meng, L. (2013). Visual Analysis for Nowcasting of Multidimensional Lightning Data. ISPRS International Journal of Geo-Information, 2 (3), 817–836. doi: 10.3390/ijgi2030817
  13. Yipeng, G., Fanming, Z., Yutao, C. (2010). Computer based concurrent design and realization of simulated training system for marine electric propulsion system. 2010 2nd International Conference on Industrial and Information Systems, 2, 511–513. doi: 10.1109/indusis.2010.5565766
  14. Halvaii, A. E.,Ehsani, M. (2011). Computer aided design tool for electric, hybrid electric and plug-in hybrid electric vehicles. 2011 IEEE Vehicle Power and Propulsion Conference, 1–6. doi: 10.1109/vppc.2011.6043005
  15. Wei, C., Zang, S. (2010). Dynamic Simulation and Control Strategy for Three-Shaft Marine Electric Propulsion Gas Turbine. Volume 3: Controls, Diagnostics and Instrumentation; Cycle Innovations; Marine, 1099–1104. doi: 10.1115/gt2010-23796
  16. Power, D. J., Sharda, R. (2007). Model-driven decision support systems: Concepts and research directions. Decision Support Systems, 43 (3), 1044–1061. doi: 10.1016/j.dss.2005.05.030
  17. Zhang, J., Zhang, Z., Xiao, X., Yang, Y., Winslett, M. (2012). Functional Mechanism: Regression Analysis under Differential Privacy. Proceedings of the VLDB Endowment, 5 (11), 1364–1375. Available at: http://vldb.org/pvldb/vol5/p1364_junzhang_vldb2012.pdf doi: 10.14778/2350229.2350253
  18. Militello, L. G., Dominguez, C. O., Lintern, G., Klein, G. (2009). The Role of Cognitive Systems Engineering in the Systems Engineering Design Process. Systems Engineering, 1–13. doi: 10.1002/sys.20147
  19. Babadi, M. K., Ghassemi, H. (2013). Effect of hull form coefficients on the vessel sea–keeping performance. Journal of Marine Science and Technology, 594–604. Available at: http://jmst.ntou.edu.tw/marine/21-5/594-604.pdf
  20. Budashko, V. V., Onyshchenko, O. A. (2014). Matematicheskie osnovy imitatsionnogo modelirovaniia sistemy upravleniia energeticheskoi ustanovkoi burovogo sudna [Mathematical principles of simulation of power plant’s control system at drillship]. Bulletin оf Kamchatka State Technical University, 29, 6–13. Available at: http://elibrary.ru/item.asp?id=22822710 (Last accessed: 02.05.2016).
  21. Boiko, A. A., Budashko, V. V., Yushkov, E. A., Boiko, N. A. (2016). Synthesis and research of automatic balancing system of voltage converter fed induction motor currents. Eastern-European Journal of Enterprise Technologies, 1 (2(79)), 22–34. doi: 10.15587/1729-4061.2016.60544
  22. Deng, J. Q., Lin, C., Yang, Q., Liu, Y. R., Tao, Z. F., Duan, H. F. (2016). Investigation of directional hydraulic fracturing based on true tri-axial experiment and finite element modeling. Computers and Geotechnics, 75, 28–47. doi: 10.1016/j.compgeo.2016.01.018
  23. Almeter, J., Eberhardt, D. (2010). Predicting the impact of design and requirement changes on high performance and conventional craft. Naval Surface Warfare Center, Seventh International Conference On High–Performance Marine Vehicles (HIPER’10), 1–15. Available at: http://data.hiper-conf.info/Hiper2010_Melbourne.pdf (Last accessed: 12.05.2016).
  24. Budashko, V. V., Yushkov, E. A. (2015). Matematycheskoe modelyrovanye vserezhymnkh rehuliatorov oborotov podrulyvaiushchykh ustroistv sudovkh enerhetycheskykh ustanovok kombynyrovannkh propulsyvnkh kompleksov [Mathematic modeling of all–range controllers speed of thrusters for ship power plants in combined propulsion complexes]. Electronic Modeling, 37 (2), 101–114. Available at: http://www.emodel.org.ua/index.php/ru/44–archive/2015–год/37–2/594–37–2–8.html (Last accessed: 10.05.2016).
  25. Hlazeva, O. V., Budashko, V. V. (2015). Aspekty matematychnoho modeliuvannia elementiv yedynykh elektroenerhetychnykh ustanovok kombinovanykh propulsyvnykh kompleksiv [Mathematical modeling aspects of elements for conjunct electric power plants combined propulsive systems]. Bulletin of NTU "KhPI". Thematic edition "Problems of improving electrical machinery and apparatus. Theory and practice", 42 (1151), 71–75.
  26. Kobougias, I., Tatakis, E., Prousalidis, J. (2013). PV Systems Installed in Marine Vessels: Technologies and Specifications. Advances in Power Electronics, 2013, 1–8. doi: 10.1155/2013/831560
  27. Ming, T., Fa-xin, Z., Yu-le, L. (2015). Reliability Analysis and Optimization of the Ship Ballast Water System. The Open Automation and Control Systems Journal, 7 (1), 98–103. doi: 10.2174/1874444301507010098
  28. Bekker, J. R., Dou, S. X. (2002). A Packaged System Approach to DP Vessel Conversion. Dynamic positioning conference, Workboats, 22.
  29. Budashko, V. V. (2015). Ymplementarni podkhod pry modelyrovanyy enerhetycheskykh protsessov dynamychesky pozytsyonyruiushcheho sudna [Implementation approaches during simulation of energy processes for a dynamically positioned ship]. Electrical engineering & electromechanics, 6, 20–25.
  30. Budashko, V. V., Onyshchenko, O. A. (2014). Udoskonalennia systemy upravlinnia pidruliuiuchym prystroiem kombinovanoho propulsyvnoho kompleksu [Improving management system combined thruster propulsion systems]. Bulletin of NTU "KhPI". Thematic edition "Electric machines and Electromechanical energy conversion", 38 (1081), 45–51. Available at: http://library.kpi.kharkov.ua/Vestnik/2014_38.pdf (Last accessed: 15.05.2016).
  31. Fossen, T. I., Sagatun, S. I., Sørensen, A. J. (1996). Identification of dynamically positioned ships. Control Engineering Practice, 4 (3), 369–376. doi: 10.1016/0967-0661(96)00014-7
  32. Vahushchenko, L. L., Tsmbal, N. N. (2007). System avtomatycheskoho upravlenyia dvyzhenyem sudna [Motion Control Systems of automatic vehicles]. Odessa, Feniks, 328.
  33. Budashko, V. V., Nikolskyi, V. V., Onishchenko, O. A., Khniunin, S. N. (2015). Physical model of degradation effect by interaction azimuthal flow with hull of ship. Proceeding Book of International conference on engine room simulators (ICERS12), 49–53.
  34. Nikolskyi, V., Budashko, V., Khniunin, S. (2015). The monitoring system of the Coanda effect for the tension–leg platform’s. Proceeding Book of International conference on engine room simulators (ICERS12), 45–49.
  35. Budashko, V. V., Nykolskyi, V. V., Khniunin, S. H. (2015). UA patent for utility model, 100819. Sudnova systema monitorynhu dlia poperedzhennia efektu Koanda [Ships monitoring system to prevent the Coanda effect]. Available at: http://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=215069 (Last accessed: 12.05.2016).
  36. Budashko, V. V., Onyshchenko, O. A., Yushkov, E. A. (2014). Fyzycheskoe modelyrovanye mnohofunktsyonalnoho propulsyvnoho kompleksa [Physical modeling of multi–propulsion complex]. Pratsi Viiskovoi akademii. Tekhnichni nauky, 2, 88–92. Available at: http://zbirnyk.vaodessa.org.ua/images/zbirnyk_2/13.PDF (Last accessed: 12.05.2016).

Downloads

Published

2016-06-29

How to Cite

Budashko, V., Nikolskyi, V., Onishchenko, O., & Khniunin, S. (2016). Decision support system’s concept for design of combined propulsion complexes. Eastern-European Journal of Enterprise Technologies, 3(8(81), 10–21. https://doi.org/10.15587/1729-4061.2016.72543

Issue

Section

Energy-saving technologies and equipment