Development of mathematical models and the calculations of elements of convective heat transfer systems
DOI:
https://doi.org/10.15587/1729-4061.2016.74826Keywords:
mathematical model, heat transfer system, thermal energy unit, heat carrier, heat exchanger, thermal energy parametersAbstract
Despite the considerable number of papers on elaborating the methods of mathematical modeling of thermal power systems, at present little attention is paid to the development of methods of analysis of the influence of different factors on the performance indicators of work of an energy unit. In this article we substantiated principles of selection and mathematical modeling of the simplest elements of heat transfer systems, which clearly reflect the essence of processes in these systems and are convenient in terms of their mathematical modeling. The use of selection and mathematical description of elementary heat exchangers, mixers and dividers of flows may describe a variety of heat transfer system of any energy plants.
These methods allow comparing various modes of operation of the equipment, its design peculiarities and their possible combination significantly faster and economically efficient. A proposed mathematical model of the elements of HTS in the form of a temperature characteristic provides unification of models of all elements, subsystems and HTS as a whole, as well as the clarity and convenience of the description of connections of elements. The calculations of heat transfer systems may be efficiently used for analysis of the work and different types of design and checking calculations of heat transfer convective surfaces. The use of generalized dimensionless parameters makes it possible to perform calculations based on different parameters of the initial information and to improve efficiency of analysis of the work of heat exchangers.References
- Rychkov, A. D. (2002). Modelyrovanye v teploenerhetyke. Vychyslytelnye tekhnolohyy, 7 (2), 94–105.
- Baskar, P., Edison, G. (2013). A Review of Mathematical Models for Performance Analysis of Hybrid Solar Photovoltaic – Thermal (PV/T) Air Heating Systems. Advanced Materials Research, 768, 29–39. doi: 10.4028/www.scientific.net/amr.768.29
- Bhandari, B., Poudel, S. R., Lee, K.-T., Ahn, S.-H. (2014). Mathematical modeling of hybrid renewable energy system: A review on small hydro-solar-wind power generation. International Journal of Precision Engineering and Manufacturing-Green Technology, 1 (2), 157–173. doi: 10.1007/s40684-014-0021-4
- Verma, P., Varun, Singal, S. (2008). Review of mathematical modeling on latent heat thermal energy storage systems using phase-change material. Renewable and Sustainable Energy Reviews, 12 (4), 999–1031. doi: 10.1016/j.rser.2006.11.002
- Zhang, Q., Turton, R., Bhattacharyya, D. (2016). Development of Model and Model-Predictive Control of an MEA-Based Postcombustion CO 2 Capture Process. Industrial & Engineering Chemistry Research, 55 (5), 1292–1308. doi: 10.1021/acs.iecr.5b02243
- Huilin, L. (2000). A coal combustion model for circulating fluidized bed boilers. Fuel, 79 (2), 165–172. doi: 10.1016/s0016-2361(99)00139-8
- Wang, J., Ge, W., Li, J. (2008). Eulerian simulation of heterogeneous gas–solid flows in CFB risers: EMMS-based sub-grid scale model with a revised cluster description. Chemical Engineering Science, 63 (6), 1553–1571. doi: 10.1016/j.ces.2007.11.023
- Halashov, N. N., Metnev, S. V. (2008). Avtomatyzyrovannyi raschet normatyvnykh y faktycheskykh pokazatelei TETs. Elektrycheskye stantsyy, 11, 26–28.
- Dulau, M., Bica, D. (2014). Mathematical Modelling and Simulation of the Behaviour of the Steam Turbine. Procedia Technology, 12, 723–729. doi: 10.1016/j.protcy.2013.12.555
- Guha, P., Unde, V. (2014). Mathematical Modeling of Spiral Heat Exchanger. International Journal of Engineering Research, 3 (4), 226–229. doi: 10.17950/ijer/v3s4/409
- Srinivas, T. (2009). Study of a deaerator location in triple-pressure reheat combined power cycle. Energy, 34 (9), 1364–1371. doi: 10.1016/j.energy.2009.05.034
- Patel, V., Patel, V., Chatterjee, K. (2015). Mathematical modelling and simulation of steam power plant. Electrical, Electronics, Signals, Communication and Optimization (EESCO). International Conference, Visakhapatnam, 1–5.
- Kowalczyk, C., Rolf, R. M., Kowalczyk, B., Badyda, K. (2015). Mathematical model of combined heat and power plant using GateCycleTM software. Journal of Power Technologies, 95 (3), 183–191.
- Popyryn, L. S. (1978). Matematycheskoe modelyrovanye y optymyzatsyia teploenerhetycheskykh ustanovok. Moscow: Enerhyia, 416.
- Hyl, A. V., Starchenko, A. V., Zavoryn, A. S. (2011). Prymenenye chyslennoho modelyrovanyia topochnykh protsessov dlia praktyky perevoda kotlov na neproektnoe toplyvo. Tomsk: STT, 184.
- Zeng, Y., Cai, Y., Huang, G., Dai, J. (2011). A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty. Energies, 4 (12), 1624–1656. doi: 10.3390/en4101624
- Gräbner, M., Ogriseck, S., Meyer, B. (2007). Numerical simulation of coal gasification at circulating fluidised bed conditions. Fuel Processing Technology, 88 (10), 948–958. doi: 10.1016/j.fuproc.2007.05.006
- Chaban, O. Y., Halianchuk I. R. (1999). Modeli i rozrakhunky elementarnykh konvektyvnykh teploobminnykiv. Visnyk DU “Lvivska politekhnika”. “Teploenerhetyka. Inzheneriia dovkillia. Avtomatyzatsiia”, 365, 32–40.
- Andriushchenko, A. Y. (1975). Osnovy tekhnycheskoi termodynamyky realnykh protsessov. Moscow: Vysshaia shkola, 264.
- Halianchuk, I. R., Kuznetsova M. Ya. (2013). Mathematical models of heat transfer system for two- and three-way heat exchangers. Eastern-European Journal of Enterprise Technologies, 2/8 (62), 29–32. Available at: http://journals.uran.ua/eejet/article/view/12428/10325
- Halianchuk, I. R., Kuznetsova M. Ya. (2014). Matematychne modeliuvannia ta doslidzhennia vlastyvostei povitropidihrivnyka kotla. Visnyk NU “Lvivska politekhnika”. Teploenerhetyka. Inzheneriia dovkillia. Avtomatyzatsiia”, 795, 40–50.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Yosyf Mysak, Igor Galyanchuk, Marta Kuznetsova
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.