The study of nanoparticles of magnitite of the lipid-magnetite suspensions by methods of photometry and electronic microscopy

Authors

  • Alexandr Alexandrov Ukrainian Engineering-Pedagogics Academy Universitetskaya str., 16, Kharkiv, Ukraine, 61003, Ukraine
  • Iryna Tsykhanovska Ukrainian Engineering-Pedagogics Academy Universitetskaya str., 16, Kharkiv, Ukraine, 61003, Ukraine https://orcid.org/0000-0002-9713-9257
  • Tatуana Gontar Ukrainian Engineering-Pedagogical Academy Universitetskaya str., 16, Kharkiv, Ukraine, 61003, Ukraine
  • Nicholas Kokodiy National Pharmaceutical University Pushkinskaya str., 53, Kharkiv, Ukraine, 61002, Ukraine
  • Natalia Dotsenko Mykolayiv State Agrarian University Paris Commune str., 9, Nikolaev, Ukraine, 54010, Ukraine https://orcid.org/0000-0002-0707-2934

DOI:

https://doi.org/10.15587/1729-4061.2016.76105

Keywords:

magnetite, photometry, electron microscopy, dispersibility, size and effective mean radius of particles, stabilization, magnetite suspension, surface active substance (SAS), sedimentation and aggregative stability

Abstract

With the aid of the methods of photometry and electronic microscopy, we studied the sedimentation and aggregative stability of the lipid­magnetite suspensions (LMS). Different LMS were obtained. All suspensions are sufficiently stable over time. The best results in stability were displayed by suspensions, in which the ratio Fe3O4:SAS=0,02:0,35 g or 0,04 mass %:0,70 mass % and 0,025:0,35 g or 0,05 mass %:0,70 mass %. We determined size of the particles of magnetite with SAS. The order of mean particle size is defined – it amounts to <d>~76 nm.

It was found that in the course of time (0–48,0 h) and with an increase in the wavelength (210–1000 nm), a gradual increase in the coefficient of transmission is observed from 25 % (210 nm) to 71,9 % (1000 nm) at 0 hours of exposure of the suspension: from 27,5 % (210 nm) to 81,2 % (1000 nm) at the maximum period of exposure of the suspension (48 hours).

The indices of LMS are determined: concentration of the particles – N=1,43 1012 сm­3, in 48 hours the concentration decreased by 20 % (N=1,19·1012 сm­3); r=38 nm, n=1,48, k=0,01. The distribution function of the particles by size is rather narrow and symmetrical, which indicates that the system of the synthesized nanoparticles is homogenous with a low degree of polydispersity.

The UV spectra of LMS and their components were taken and analyzed. The comparison of the spectra of transmission of suspensions with different degree of dilution testifies to chemical identity of the samples.

The kinetic dependences of the coefficient of transmission for the suspensions with different concentration of magnetite (Fe(ov.).), were examined, based on which we calculated the effective mean radius of the particles of the stabilized magnetite: 76–168 nm. The mean radius of the particles in the lipid suspension of magnetite without stabilizer (reff)=400 nm. Visually, LMS manifested high aggregation stability at the total time of sedimentation reaching several tens of hours.

It was established that LMS can be used as the biologically­active and food supplements, which possess the comprehensive action: beneficial biological effect on the human organism; due to the presence of bivalent iron in magnetite and capacity to form transition complexes with oxygen and peroxide radicals (and hydroperoxides), they manifest antioxidant activity, which leads to improvement in the quality and lengthening of the period of storage of the products that contain fat. Furthermore, LMS due to Fe2+ of magnetite can be recommended as the source of easily assimilated iron and as the anti­anemic means. Therefore, the introduction of LMS to the food products increases its quality, nutritional and biological value.

Author Biographies

Alexandr Alexandrov, Ukrainian Engineering-Pedagogics Academy Universitetskaya str., 16, Kharkiv, Ukraine, 61003

Candidate of Chemistry Sciences, Associate Professor, Head of the Department

Department of food and chemical technologies

Iryna Tsykhanovska, Ukrainian Engineering-Pedagogics Academy Universitetskaya str., 16, Kharkiv, Ukraine, 61003

Candidate of Chemistry Sciences, Associate Professor

Department of food and chemical technologies

Tatуana Gontar, Ukrainian Engineering-Pedagogical Academy Universitetskaya str., 16, Kharkiv, Ukraine, 61003

Senior Lecturer

Department of Food and Chemical Technology

Nicholas Kokodiy, National Pharmaceutical University Pushkinskaya str., 53, Kharkiv, Ukraine, 61002

Doctor of technical Sciences, Professor

Department of Theoretical Physics

Natalia Dotsenko, Mykolayiv State Agrarian University Paris Commune str., 9, Nikolaev, Ukraine, 54010

PhD, assistant

Department of mechanization and electrification of agricultural production

References

  1. Skurihin, I. M. (1991). VsYo o pische s tochki zreniya himika. Moscow: Vyissha shkola, 33–40.
  2. Tyutyunnikov, B. N. (1992). Himiya zhirov; 3rd edition. Moscow: Kolos, 448.
  3. Roginskiy, V. A. (1990). Kinetika okisleniya efirov polinenasyischennyih zhirnyih kislot, ingibirovannogo zameschennyimi fenolami. Kinetika i kataliz, 31 (3), 546–552.
  4. Demydov, I. M., Hryhorova, A. V. (2012). Vplyv stupenya nenasychenosti oliy na sklad vtorynnykh produktiv yikh okysnenya. Tekhnichni nauky: stan, dosyahnennya i per-spektyvy rozvytku m"yasnoyi, oliye-zhyrovoyi ta molochnoyi haluzey, 42–43.
  5. Demidov, I. N., Nevmivaka, D. V. (2014). Opredelenie srokov hraneniya zhirov i zhirovyih produktov uskorennyim metodom. Maslozhirovaya otrasl: tehnologii i ryinok, 27–28.
  6. Denysova, A. Yu., Tsykhanovskaya, Y. V., Skorodumova, O. B., Honcharenko, Ya. M., Pryymak, H. O., Shevchenko, I. V. (2013). Doslidzhennya vplyvu zhyro-mahnetytovoyi suspenziyi na termin zberihannya tvarynnykh zhyriv. Prohresyvna tekhnika ta tekhnolohiyi kharchovykh vyrobnytstv, restorannoho ta hotel'noho hospodarstv i torhivli. Ekonomichna stratehiya i perspektyvy rozvytku sfery torhivli ta posluh, Part 1, 71–72.
  7. Ilyuha, N. G., Barsova, Z. V., Kovalenko, V. A., Tsihanovskaya, I. V. (2010). Tehnologiya proizvodstva i pokazateli kachestva pischevoy dobavki na osnove magnetita. Eastern-European Journal of Enterprise Technologies, 6 (10 (48)), 32–35. Available at: http://journals.uran.ua/eejet/article/view/5847/5271
  8. Tsihanovskaya, I. V., Denisova, A. Yu., Skorodumova, O. B., Levitin, E. Ya., Kovalenko, V. A., Aleksandrov, A. V., Barsova, Z. V. (2012). Izuchenie rastvorimosti magnetita v usloviyah, imitiruyuschih pischevaritelnyie protsessyi zheludochno-kishechnogo trakta. Eastern-European Journal of Enterprise Technologies, 6 (6 (60)), 29–31. Available at: http://journals.uran.ua/eejet/article/view/5547/4988
  9. Tsykhanovs'ka, I. V., Barsova, Z. V., Demydov, I. M., Pavlots'ka, L. F. (2015). Doslidzhennya protsesiv okysnyuval'nykh ta termichnykh peretvorenn' v systemi: oliya – lipido – mahnetytova suspenziya. Prohresyvna tekhnika ta tekhnolohiyi kharchovykh vyrobnytstv restorannoho hospodarstva i torhivli, 1 (21), 353–362.
  10. Krushenko, G. G., Reshetnikova, S. N. (2011). Problemyi opredeleniya razmerov nanochastits. Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo universiteta imeni akademika M. F. Reshetneva, 2, 167–170.
  11. Suzdalev, I. P. (2006). Nanotehnologiya: fiziko–himiya nanoklasterov, nanostruktur i nanomaterialov. Moscow: KomKniga, 365.
  12. Kecskes, L. J., Woodman, R. H., Trevino, S. F., Klotz, B. R., Hirsch, S. G., Gersten, B. L. (2003). Characterization of a Nanosized Iron Powder by Comparative Methods. KONA, 21, 143–150. doi: 10.14356/kona.2003017
  13. NaBond Technologies Co. Available at: http://www.nabond.com/TiN_nanopowder.html
  14. Egorova, E. M. et. al. (2002). Stabilnyie nanochastitsyi serebra v vodnih dispersiyah, poluchennyih iz mitsellyarnyih rastvorov. Zhurnal prikladnoy himii, 75 (10), 1620–1625.
  15. Pimenova, N. V. (2011). Poroshki volframa, poluchennyie razlichnyimi sposobami. Tehnologiya metallov, 2, 25–27.
  16. Xu, R. (2001). Particle Characterization: Light Scattering Methods. N.Y.: Kluwer Academic Publishers, 410.
  17. Mamani, J. B., Sibov, T. T., Caous, C. A., Amaro, Jr. E., Gamarra, L. F. (2012). Particokinetics: computational analysis of the superparamagnetic iron oxide nanoparticles deposition process. International Journal of Nanomedicine, 2012:7, 2699–2712. doi: 10.2147/ijn.s30074
  18. Lou, W., Charalampopoulos, T. T. (1994). On the electromagnetic scattering and absorption of agglomerated small spherical particles. Journal of Physics D: Applied Physics, 27 (11), 2258–2270. doi: 10.1088/0022-3727/27/11/004
  19. Di Stasio, S. (2000). Feasibility of an optical experimental method for the sizing of primary spherules in sub-micron agglomerates by polarized light scattering. Applied Physics B: Lasers and Optics, 70 (4), 635–643. doi: 10.1007/s003400050872
  20. Mulholland, G. W., Donnelly, M. K., Hagwood, C. R., Kukuck, S. R., Hackley, V. A., Pui, D. Y. H. (2006). Measurement of 100 nm and 60 nm Particle Standards by Differential Mobility Analysis. Journal of Research of the National Institute of Standards and Technology, 111 (4), 257. doi: 10.6028/jres.111.022
  21. Ivanov, L. A., Kizevetter, D. V., Kiselev, N. N. et. al. (2006). Izmenenie svetovozvrascheniya ot steklyannyih mikrosharikov i progon kachestva sveto-vozvraschayuschih pokryitiy. Opt. zhurn., 73 (1), 35–40.
  22. Van de Hyulst, G. (1961). Rasseyanie sveta malyimi chastitsami. Moscow: IL, 536.
  23. Kerker, M. (1969). The scattering of light and other electromagnetic radiation. N.Y., London, Academic Press, 666.
  24. Xu, R. (2001). Particle Characterization: Light Scattering Methods. N.Y.: Kluwer Academic Publishers, 410.
  25. Papok, I. M., Petrova, G. P., Anenkova, K. A., Papish, E. A. (2012). Using the dynamic light-scattering method for the analysis of a blood-serum model solution. Moscow University Physics Bulletin, 67 (5), 452–456. doi: 10.3103/s0027134912050104
  26. Sohrabi-Gilani, N., Makani, S. (2016). Extraction of ultratrace amounts of nelfinavir from biological samples and pharmaceutical formulations using surfactant-modified magnetite nanoparticles followed by spectrophotometric determination. Microchemical Journal, 129, 332–338. doi: 10.1016/j.microc.2016.06.003
  27. Sutorikhin, I., Bukaty, V., Zalaeva, U., Akulova, O. (2013). Issledovaniya kontsentratsii i razmerov chastits vodnoy vzvesi s pomoschyu opticheskogo metoda fluktuatsiy prozrachnosti. Izvestiya of Altai State University, 1 (2), 189–193. doi 10.14258/izvasu(2013)1.2-39
  28. Ershov, A. E., Isaev, I. L., Semina, P. N., Markel, V. A., Karpov, S. V. (2012). Effects of size polydispersity on the extinction spectra of colloidal nanoparticle aggregates. Physical Review B, 85 (4). doi: 10.1103/physrevb.85.045421
  29. Ilyuha, M. G, Tsihanovska, I. V., Barsova, Z. V., TImofeeva, V. P., Vedernikova, I. O. (2010). Patent. na korisnu model # 54284, MPK S 01 G 49/00. SposIb otrimannya magnetitu. Published: 10.11.2010. Byul. # 21, 4.
  30. Van de Hulst, H. (1957). Light Scattering by Small Particles. N.Y.: J. Willey & Sons, 536.
  31. Voyutskiy, S. S. (1975). Kurs kolloidnoy himii; 2nd edition. Mosocw: Himiya, 512.
  32. Ivanov, L. A., Kizevetter, D. V., Kiselev, N. N. et. al. (2006). Izmenenie svetovozvrascheniya ot steklyannyih mikrosharikov i progon kachestva svetovozvraschayuschih pokritiy. Opt. zhurn., 73 (1), 35–40.
  33. Kizevetter, D. V., Malyugin, V. I. (2009). Odnovremennoe izmerenie razmerov i skorosti dvizheniya chastits. Zhurn. tehn. fiziki, 79 (2), 90–95.
  34. Chekhun, V., Horobets', S., Horobets', O., Dem"yanenko, I. (2011). Mahnitni nanostruktury v pukhlynnykh klitynakh. Visn. NAN Ukrayiny, 11, 13–20.
  35. Alexandrov, A., Tsykhanovska, I., Gontar, T., Kokodiy, N., Dotsenko, N. (2016). Stability and morphological characteristics of lipid-magnetite suspensions. Eureka: Life Sciences, 3 (3), 14–25. doi: 10.21303/2504-5695.2016.00143

Downloads

Published

2016-08-31

How to Cite

Alexandrov, A., Tsykhanovska, I., Gontar, T., Kokodiy, N., & Dotsenko, N. (2016). The study of nanoparticles of magnitite of the lipid-magnetite suspensions by methods of photometry and electronic microscopy. Eastern-European Journal of Enterprise Technologies, 4(11(82), 51–61. https://doi.org/10.15587/1729-4061.2016.76105

Issue

Section

Technology and Equipment of Food Production