Definition of factors influencing on Ni(OH)2 electrochemical characteristics for supercapacitors

Authors

  • Vadym Кovalenko SHEI Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 FSBEI HE Vyatka State University Moskovskaya str., 36, Kirov, Russian Federation, 610000, Ukraine https://orcid.org/0000-0002-8012-6732
  • Valerii Kotok SHEI Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 FSBEI HE Vyatka State University Moskovskaya str., 36, Kirov, Russian Federation 610000, Ukraine https://orcid.org/0000-0001-8879-7189
  • Olexandr Bolotin Lys’va Filial of FSBEI HE “Perm National Research Polytechnic University” Lenina str., 2, Lys’va, Russian Federation, 618900, Russian Federation https://orcid.org/0000-0001-5784-5854

DOI:

https://doi.org/10.15587/1729-4061.2016.79406

Keywords:

nickel hydroxide, specific capacity, supercapacitor, crystallinity, particle agglomerate breakdown

Abstract

Nickel hydroxide is widely used as an active material for hybrid supercapacitors. To improve the characteristics of supercapacitors, Ni(OH)2 with the optimal parameters to be determined should be synthesized. For this, Ni(OH)2 samples were prepared by various methods: decomposition, homogeneous precipitation, electrochemical synthesis using slit diaphragm electrolyzer under various current densities, with diaphragm or membrane, carbonate activation, immediate ultrasound post­treatment and an industrial sample, prepared by chemical route. Structural properties of the samples were studied by X­ray phase analysis, specific surface area – BET method by nitrogen adsorption, electrochemical characteristics – galvanostatic charge­discharge cycling in the supercapacitor mode. It has been demonstrated that high specific capacity is the most affected by α (or layered α+β) structure, optimal (average or low) crystallinity, introduction of activating additive and the ability of particle agglomerates to undergo breakdown into smaller particles during charge­discharge. Specific surface area has little influence on specific capacity. The sample prepared in slit diaphragm electrolyzer at 15.7 A/dm2 has a layered type of crystal structure, and the ability of particle agglomerates to undergo breakdown into smaller particles during charge­discharge, and showed the highest specific capacity of 650 F/g.

Author Biographies

Vadym Кovalenko, SHEI Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 FSBEI HE Vyatka State University Moskovskaya str., 36, Kirov, Russian Federation, 610000

PhD, associate professor

Department of Analytical Chemistry and Food Additives and Cosmetics

Department of Technologies of Inorganic Substances and Electrochemical Manufacturing

Valerii Kotok, SHEI Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 FSBEI HE Vyatka State University Moskovskaya str., 36, Kirov, Russian Federation 610000

PhD, associate professor

Department of Processes, Apparatus and General Chemical Technology

Department of Technologies of Inorganic Substances and Electrochemical Manufacturing

Olexandr Bolotin, Lys’va Filial of FSBEI HE “Perm National Research Polytechnic University” Lenina str., 2, Lys’va, Russian Federation, 618900

PhD

Department of additional education and development of competentions

References

  1. Simon, P., Gogotsi, Y. (2008). Materials for electrochemical capacitors. Nature Materials, 7 (11), 845–854. doi: 10.1038/nmat2297
  2. Burke, A. (2007). R&D considerations for the performance and application of electrochemical capacitors. Electrochimica Acta, 53 (3), 1083–1091. doi: 10.1016/j.electacta.2007.01.011
  3. Lang, J.-W., Kong, L.-B., Wu, W.-J., Liu, M., Luo, Y.-C., Kang, L. (2008). A facile approach to the preparation of loose-packed Ni(OH)2 nanoflake materials for electrochemical capacitors. Journal of Solid State Electrochemistry, 13 (2), 333–340. doi: 10.1007/s10008-008-0560-0
  4. Lang, J.-W., Kong, L.-B., Liu, M., Luo, Y.-C., Kang, L. (2009). Asymmetric supercapacitors based on stabilized α-Ni(OH)2 and activated carbon. Journal of Solid State Electrochemistry, 14 (8), 1533–1539. doi: 10.1007/s10008-009-0984-1
  5. Aghazadeh, M., Ghaemi, M., Sabour, B., Dalvand, S. (2014). Electrochemical preparation of α-Ni(OH)2 ultrafine nanoparticles for high-performance supercapacitors. Journal of Solid State Electrochemistry, 18 (6), 1569–1584. doi: 10.1007/s10008-014-2381-7
  6. Zheng, C., Liu, X., Chen, Z., Wu, Z., Fang, D. (2014). Excellent supercapacitive performance of a reduced graphene oxide/Ni(OH)2 composite synthesized by a facile hydrothermal route. Journal of Central South University, 21 (7), 2596–2603. doi: 10.1007/s11771-014-2218-7
  7. Wang, B., Williams, G. R., Chang, Z., Jiang, M., Liu, J., Lei, X., Sun, X. (2014). Hierarchical NiAl Layered Double Hydroxide/Multiwalled Carbon Nanotube/Nickel Foam Electrodes with Excellent Pseudocapacitive Properties. ACS Applied Materials & Interfaces, 6 (18), 16304–16311. doi: 10.1021/am504530e
  8. Ramesh, T. N., Kamath, P. V., Shivakumara, C. (2005). Correlation of Structural Disorder with the Reversible Discharge Capacity of Nickel Hydroxide Electrode. Journal of The Electrochemical Society, 152 (4), A806–A810. doi: 10.1149/1.1865852
  9. Zhao, Y., Zhu, Z., Zhuang, Q.-K. (2005). The relationship of spherical nano-Ni(OH)2 microstructure with its voltammetric behavior. Journal of Solid State Electrochemistry, 10 (11), 914–919. doi: 10.1007/s10008-005-0035-5
  10. Jayashree, R. S., Kamath, P. V., Subbanna, G. N. (2000). The Effect of Crystallinity on the Reversible Discharge Capacity of Nickel Hydroxide. Journal of The Electrochemical Society, 147 (6), 2029. doi: 10.1149/1.1393480
  11. Jayashree, R. S., Kamath, P. V. (1999). Factors governing the electrochemical synthesis of a-nickel (II) hydroxide. Journal of Applied Electrochemistry, 29 (4), 449–454. doi: 10.1023/a:1003493711239
  12. Ramesh, T. N., Kamath, P. V. (2006). Synthesis of nickel hydroxide: Effect of precipitation conditions on phase selectivity and structural disorder. Journal of Power Sources, 156 (2), 655–661. doi: 10.1016/j.jpowsour.2005.05.050
  13. Rajamathi, M., Vishnu Kamath, P., Seshadri, R. (2000). Polymorphism in nickel hydroxide: role of interstratification. Journal of Materials Chemistry, 10 (2), 503–506. doi: 10.1039/a905651c
  14. Bora, M. (2003). Homogeneous precipitation of nickel hydroxide powders. United States, 731. doi: 10.2172/822049
  15. Yang, L.-X., Zhu, Y.-J., Tong, H., Liang, Z.-H., Li, L., Zhang, L. (2007). Hydrothermal synthesis of nickel hydroxide nanostructures in mixed solvents of water and alcohol. Journal of Solid State Chemistry, 180 (7), 2095–2101. doi: 10.1016/j.jssc.2007.05.009
  16. Liu, C., Li, Y. (2009). Synthesis and characterization of amorphous α-nickel hydroxide. Journal of Alloys and Compounds, 478 (1-2), 415–418. doi: 10.1016/j.jallcom.2008.11.049
  17. Xu, L., Ding, Y.-S., Chen, C.-H., Zhao, L., Rimkus, C., Joesten, R., Suib, S. L. (2008). 3D Flowerlike α-Nickel Hydroxide with Enhanced Electrochemical Activity Synthesized by Microwave-Assisted Hydrothermal Method. Chemistry of Materials, 20 (1), 308–316. doi: 10.1021/cm702207w
  18. Córdoba de Torresi, S. I., Provazi, K., Malta, M., Torresi, R. M. (2001). Effect of Additives in the Stabilization of the α Phase of Ni(OH)2 Electrodes. Journal of The Electrochemical Society, 148 (10), A1179–A1184. doi:1 10.1149/1.1403731
  19. Kotok, V. A., Koshel, N. D., Kovalenko, V. L., Grechanuk, A. A. (2008) The stability of aluminium-substituted alpha-nickel hydroxide. First Regional Symposium on Electrochemistry of South-East Europe “RSE-SEE”, 201–203.
  20. Zhen, F. Z., Quan, J. W., Min, Y. L., Peng, Z., Jun, J. L. (2004). A study on the structure and electrochemical characteristics of a Ni/Al double hydroxide. Metals and Materials International, 10 (5), 485–488. doi: 10.1007/bf03027353
  21. Hu, M., Lei, L. (2006). Effects of particle size on the electrochemical performances of a layered double hydroxide, Ni4Al(OH)10.NO3. Journal of Solid State Electrochemistry, 11 (6), 847–852. doi: 10.1007/s10008-006-0231-y
  22. Sugimoto, A., Ishida, S., Kenzo, H. (1999). Preparation and Characterization of Ni/Al-Layered Double Hydroxide. Journal of The Electrochemical Society, 146 (4), 1251–1255. doi: 10.1149/1.1391754
  23. Caravaggio, G. A., Detellier, C., Wronski, Z. (2001). Synthesis, stability and electrochemical properties of NiAl and NiV layered double hydroxides. Journal of Materials Chemistry, 11 (3), 912–921. doi: 10.1039/b004542j
  24. Chen, H., Wang, J. M., Pan, T., Zhao, Y. L., Zhang, J. Q., Cao, C. N. (2005). The structure and electrochemical performance of spherical Al-substituted α-Ni(OH)2 for alkaline rechargeable batteries. Journal of Power Sources, 143 (1-2), 243–255. doi: 10.1016/j.jpowsour.2004.11.041
  25. Vasserman, I. N. (1980). Khimicheskoe osazdenie is rastvorov (Chemical precipitation from solutions). Leningrad: Khimia, 208.
  26. Li, Q., Ni, H., Cai, Y., Cai, X., Liu, Y., Chen, G. et. al. (2013). Preparation and supercapacitor application of the single crystal nickel hydroxide and oxide nanosheets. Materials Research Bulletin, 48 (9), 3518–3526. doi: 10.1016/j.materresbull.2013.05.049
  27. Fang, B., Gu, A., Wang, G., Li, B., Zhang, C., Fang, Y., Zhang, X. (2009). Synthesis hexagonal ß-Ni(OH)2 nanosheets for use in electrochemistry sensors. Microchimica Acta, 167 (1-2), 47–52. doi: 10.1007/s00604-009-0213-8
  28. Kovalenko, V. L., Kotok, V. A., Malyshev, V. V. (2008). Izuchenie kharackteristic nickel hydroxide, poluchennyh razlichnymi sposobami. Vesnik Natsionalnogo tehnichnogo universiteta “KhPI”, 16, 46–49.
  29. Кovalenko, V. L., Kotok, V. A., Bolotin, A. V. (2015). Method Development for Synthesis of Nickel Hydroxide with High Crystallinity. Providing the Study of the Characteristics of the Obtained Substance for Using with Accumulatora ant supercapacitors. Collectrion of research papers of National mining university, 48, 202–208.
  30. Kovalenko, V. L., Pinielle, I. D., Kotok, V. A., Baskevich, A. V. (2003). Electrokhimicheskii method polucheniya gidroxida nikeliya. Voprosy khimii I khimicheskoy tehnologii, 5, 130–131.
  31. Kovalenko, V. L., Kotok, V. A., Pinielle, I. D., Koshel, V. V., Priymak V. V. (2005). Poluchenie gidroxida nikeliya kak aktivnogo veshestva shelochnyh akkumuliatorov v shelevom diafragmennom electrolizere. Vesnik Natsionalnogo tehnichnogo universiteta “KhPI”, 16, 76–79.
  32. Kovalenko, V. L., Kotok, V. A., Malishev, V. V. (2008). Electrochemical obtaining of Ni(OH)2 from sulphate solution by flowing slit diafragm electrolyzer. RSE-SEE, 1st regional symposium on electrochemistry of South-East Europe. Book of abstracts, 201–203.
  33. Nikolenko, N. V., Esajenko, E. E. (2005). Surface Properties of Synthetic Calcium Hydroxyapatite. Adsorption Science & Technology, 23 (7), 543–553. doi: 10.1260/026361705775212466
  34. Nechayev, Y. A., Nikolenko, N. V. (1988). An adsorption mechanism for supergene gold accumulation. Geochem. Int., 25 (11), 52–56.
  35. Jayashree, R. S., Kamath, P. V., Subbanna, G. N. (2000). The Effect of Crystallinity on the Reversible Discharge Capacity of Nickel Hydroxide. Journal of The Electrochemical Society, 147 (6), 2029–2032. doi: 10.1149/1.1393480

Downloads

Published

2016-10-30

How to Cite

Кovalenko V., Kotok, V., & Bolotin, O. (2016). Definition of factors influencing on Ni(OH)2 electrochemical characteristics for supercapacitors. Eastern-European Journal of Enterprise Technologies, 5(6 (83), 17–22. https://doi.org/10.15587/1729-4061.2016.79406

Issue

Section

Technology organic and inorganic substances