Investigation of the oxide phase convective homogenization while vacuum-arc with hollow cathode remelting of steel

Authors

  • Oksana Andreeva A. N. Podgorny Institute of Mechanical Engineering Problems of NAS Dm. Pozharsky str., 2/10, Kharkiv, Ukraine, 61046 National Science Center "Kharkiv Institute of Physics and Technology" Akademicheskaya str., 1, Kharkiv, Ukraine, 61108, Ukraine https://orcid.org/0000-0001-9757-8519
  • Boris Borts Sci. & Production Establishment " Accelerating nuclear systems " of NSC "Kharkov Institute for Physics & Technology" of NAS of Ukraine, Akademicheskaya str., 1, Kharkiv, Ukraine, 61108, Ukraine https://orcid.org/0000-0002-1492-4066
  • Andrii Kostikov A. M. Pidgorny Institute for Mechanical Engineering Problems of of National Academy of Sciences of Ukraine Pozharskogo str., 2/10, Kharkiv, Ukraine, 61046 V. N. Karazin Kharkiv National University Svobody sq., 6, Kharkiv, Ukraine, 61022, Ukraine https://orcid.org/0000-0001-6076-1942
  • Victor Tkachenko Sci. & Production Establishment "Renewable Energy Sources & Sustainable Technologies" Nat. Sci. Center "Kharkov Institute for Physics & Technology" of National Academy of Sciences of Ukraine Akademicheskaya str., 1, Kharkiv, Ukraine, 61108 V. N. Karazin Kharkiv National University Svobody sq., 6, Kharkiv, Ukraine, 61022, Ukraine https://orcid.org/0000-0002-1108-5842

DOI:

https://doi.org/10.15587/1729-4061.2016.79527

Keywords:

reactor`s steel, oxide powder, hollow cathode, vacuum-arc remelting, convective cell, mixed boundary conditions, mass transfer, homogenization

Abstract

Discussion of the requirements for the placement of ZrO2 powder in the cathode, which must be taken into account in the production of ODS steel by vacuum-arc remelting in order to provide the high level of homogenization of the oxide particle is presented. The description of the experimental setup and the cathode structure for vacuum-arc remelting of steel, alloyed with oxide nano-powder is given. The role of convective processes in the homogenization of nano-particles in the production of ODS steel is highlighted. The convective flow of liquid metal captures ZrO2 powder particles and carries them throughout its volume.

The use of the elementary cylindrical convective cell with mixed boundary conditions is proposed for the description of homogenization of the oxide particles. The structure and spatial distribution of the convective mass transfer in the cylindrical convective cell with the cosinusoidal bottom profile are provided.

Spatial distribution of convective flow in the cell is described by the Stokes lines, which are concentrically arranged smooth closed lines, which indicates the formation of convective flow in the form of a single vortex in the cell with mixed boundary conditions. Near the bottom, the Stokes lines reflect the curved cosine bottom profile. Criteria of vacuum-arc melting and convective mixing of ZrO2 nano-particles are formulated.

Drops of the liquid material of the cathode with ZrO2 nano-particles penetrate to the central vertical flow of the convective cell. Then, near the wall of the crystallizer, the particles are subjected to vertical forces: Archimedes force (always directed in vertical direction, i.e. upwards); gravity force (always directed downwards); friction force (Stokes force) (directed along the liquid velocity vector) on these particles.

The Archimedes force depends on the volume, i.e. size, of the particle. Thus, the less the nano-particle size, the lower the buoyancy force. The criterion of overcoming the Archimedes force allows determining the sizes of the particle at which their uniform distribution in the cell volume is possible.

Criteria of convective homogenization ZrO2 nanoparticles are the following:

– droplets of cathode material penetrate into the cylindrical convective cell on a circular line which corresponds to the inner circumference of the hollow cathode;

– drops of the cathode material penetrate to a depth of convective cells, consistent with its half-height;

– ZrO2 particles with sizes less than 90 nm will be stored for a long time in the melt, and homogenized in volume of the melt as a result of convective mass transport.

Author Biographies

Oksana Andreeva, A. N. Podgorny Institute of Mechanical Engineering Problems of NAS Dm. Pozharsky str., 2/10, Kharkiv, Ukraine, 61046 National Science Center "Kharkiv Institute of Physics and Technology" Akademicheskaya str., 1, Kharkiv, Ukraine, 61108

Postgraduate student

Junior researcher 

Boris Borts, Sci. & Production Establishment " Accelerating nuclear systems " of NSC "Kharkov Institute for Physics & Technology" of NAS of Ukraine, Akademicheskaya str., 1, Kharkiv, Ukraine, 61108

Doctor of technical Science, senior researcher, deputy Director on Scientific Work

Andrii Kostikov, A. M. Pidgorny Institute for Mechanical Engineering Problems of of National Academy of Sciences of Ukraine Pozharskogo str., 2/10, Kharkiv, Ukraine, 61046 V. N. Karazin Kharkiv National University Svobody sq., 6, Kharkiv, Ukraine, 61022

Doctor of Technical Sciences, associate professor, Leading Researcher

Professor

Department of Thermal Physics and Molecular Physics

Victor Tkachenko, Sci. & Production Establishment "Renewable Energy Sources & Sustainable Technologies" Nat. Sci. Center "Kharkov Institute for Physics & Technology" of National Academy of Sciences of Ukraine Akademicheskaya str., 1, Kharkiv, Ukraine, 61108 V. N. Karazin Kharkiv National University Svobody sq., 6, Kharkiv, Ukraine, 61022

Doctor of Physics and Mathematics, Professor, Director

Head of Department

Department of Physics of Innovative Energy & Technology & Ecology 

References

  1. Rogozhkin, S. V., Aleev, A. A., Zaluzhnyi, A. G., Nikitin, A. A., Iskandarov, N. A., Vladimirov, P. et. al. (2011). Atom probe characterization of nano-scaled features in irradiated ODS Eurofer steel. Journal of Nuclear Materials, 409 (2), 94–99. doi: 10.1016/j.jnucmat.2010.09.021
  2. Rogozhkin, S. V., Nikitin, A. A., Aleev, A. A., Germanov, A. B., Zaluzhnyi, A. G. (2013). Atom probe study of radiation induced precipitates in Eurofer97 Ferritic-Martensitic steel irradiated in BOR-60 reactor. Inorganic Materials: Applied Research, 4 (2), 112–118. doi: 10.1134/s2075113313020160
  3. Azarenkov, N. A., Vojevodin, V. N., Kirichenko, V. G., Kovtun, G. P., Kurinny, V. V., Lytovchenko, S. V. (2013). Nanostructural Materials in the Nuclear Engineering. The Journal of KNU. №1059. Physical series «Nuclei, Particles, Fields», 2 (58), 19–29.
  4. Antsyferov, N., Bobrov, H. V., Druzhynyn, L. K. et. al. (1987). Poroshkovaia metallurhyia y napilenyia pokrityia. Moscow: Metallurhyia, 792.
  5. Aheev, V. S., Nykytyna, A. A., Saharad, V. V., Safronov, B. V., Chukanov, A. P., Tsvelev, V. V. (2007). Yspolzovanye metodov metallurhyy raspilennikh y bistrozakalennikh poroshkov dlia yzghotovlenyia obolochek tvelov yz dyspersno-uprochnennikh oksydamy (DUO) zharoprochnikh ferrytno-martensytnikh stalei. VANT. Seryia: Fyzyka radyatsyonnikh povrezhdenyi y radyatsyonnoe materyalovedenye, I (2), 134–141.
  6. Aheev, V. S., Hyrshov, V. L. (2015). Horiachee yzostatycheskoe pressovane metallycheskykh poroshkov. Komplekt: YTO, 08, 28–30.
  7. Hilger, I., Boulnat, X., Hoffmann, J., Testani, C., Bergner, F., De Carlan, Y. et. al. (2016). Fabrication and characterization of oxide dispersion strengthened (ODS) 14Cr steels consolidated by means of hot isostatic pressing, hot extrusion and spark plasma sintering. Journal of Nuclear Materials, 472, 206–214. doi: 10.1016/j.jnucmat.2015.09.036
  8. Pozdniakov, V. A. (2007). Plastychnost nanokrystallycheskykh materyalov s bymodalnoi zerennoi strukturoi. Pysma v ZhTF, 33 (23), 36–42.
  9. Lu, C., Lu, Z., Xie, R., Liu, C., Wang, L. (2016). Microstructure of HIPed and SPSed 9Cr-ODS steel and its effect on helium bubble formation. Journal of Nuclear Materials, 474, 65–75. doi: 10.1016/j.jnucmat.2016.03.010
  10. Ijiri, Y., Oono, N., Ukai, S., Ohtsuka, S., Kaito, T., Matsukawa, Y. (2016). Oxide particle–dislocation interaction in 9Cr-ODS steel. Nuclear Materials and Energy. doi: 10.1016/j.nme.2016.06.014
  11. Auger, M. A., de Castro, V., Leguey, T., Lozano-Perez, S., Bagot, P. A. J., Moody, M. P., Roberts, S. G. (2016). Effect of the milling atmosphere on the microstructure and mechanical properties of a ODS Fe-14Cr model alloy. Materials Science and Engineering: A, 671, 264–274. doi: 10.1016/j.msea.2016.06.054
  12. Chen, C.-L., Zeng, Y. (2016). Effect of consolidation and oxide dispersoid addition on phase formation and mechanical properties of WTi ODS alloy. International Journal of Refractory Metals and Hard Materials, 60, 11–16. doi: 10.1016/j.ijrmhm.2016.06.012
  13. Loyer-Prost, M., Merot, J.-S., Ribis, J., Le Bouar, Y., Chaffron, L., Legendre, F. (2016). High resolution Transmission Electron Microscopy characterization of a milled oxide dispersion strengthened steel powder. Journal of Nuclear Materials, 479, 76–84. doi: 10.1016/j.jnucmat.2016.06.050
  14. Borts, B. V., Vanzha, A. F., Korotkova, Y. M., Sityn, V. Y., Tkachenko, V. Y. (2014). Yssledovanye vozmozhnosty poluchenyia dyspersno-uprochnennikh oksydamy (DUO) stalei metodom vakuumno-duhovoho pereplava. VANT. Seryia: Fyzyka radyatsyonnikh povrezhdenyi y radyatsyonnoe materyalovedenye, 4 (92), 117–124.
  15. Bozbiei, L., Borts, B., Neklyudov, I., Tkachenko, V. (2016). Investigation of the oxide phase homogenization in the convective cell while producing vacuum-arc remelting. Eastern-European Journal of Enterprise Technologies, 2 (5 (80)), 14–21. doi: 10.15587/1729-4061.2016.65424
  16. Patochkina, О. L., Borts, B. V., Tkachenko, V. I. (2015). Elementary Convection Cell in the Horizontal Layer of Viscous Incompressible Liquid with Rigid and Mixed Boundary Conditions. East-European J. of Phys., 2 (1), 23–31.
  17. Yachykov, Y. M., Morozov, A. P., Portnova, Y. V. (2007). Patent RU 2293268, MPK F27V3/08. Sposob elektroplavky v duhovoi pechy postoiannoho toka. 2005115622/02, declareted: 23.05.2005, published: 10.02.2007, Bul. 4, 10.
  18. Gershuni, G. Z., Zhuxovickij, E. M. (1972). Convective stability of incompressible fluid. Мoscow: Nauka, 393.

Downloads

Published

2016-10-30

How to Cite

Andreeva, O., Borts, B., Kostikov, A., & Tkachenko, V. (2016). Investigation of the oxide phase convective homogenization while vacuum-arc with hollow cathode remelting of steel. Eastern-European Journal of Enterprise Technologies, 5(5 (83), 25–32. https://doi.org/10.15587/1729-4061.2016.79527