Optimization of the procedure of thermal flaw detection of the honeycomb constructions by improving the accuracy of interference function

Authors

DOI:

https://doi.org/10.15587/1729-4061.2016.79563

Keywords:

honeycomb construction, thermal flaw detection, radiating capacity, adhesion failure

Abstract

The thermophysical model of the honeycomb constructions was explored. The given model considers the interferences, which appear on the OC surface, and those caused by the inhomogeneity of internal structure (by the "adhesion failure" flaw). The process of thermal flaw detection of honeycomb constructions was analyzed on its basis. As a result of the TFD analysis, a number of characteristic interferences, which complicate its industrial application, were revealed. The methods of decreasing interferences, characteristic for the honeycomb constructions, by optimization of the TFD procedure by the value of criterion ∆Тdef/∆U were proposed.

Since the interferences, caused by inhomogeneous structure of the control object, cannot be removed by optimization of the TFD procedure, the method of processing the obtained results by the algorithm of differential filtration was proposed.

As a result of applying proposed methods, we achieved a decrease in the interference level, connected with the heterogeneity of heating, to 0,7 °C (instead of 1,4 °C), a decrease in the interference, caused by the inhomogeneity of radiation capacity, to 0,6 °C (instead of 2 °C) and a decrease in temperature contrast, caused by the inhomogeneity of the glue layer, to 0,2 °C (instead of 1,2 °C). Owing to this, sensitivity of the thermal flaw detection to the identification of flaws, caused by inhomogeneity, increased: internal – to threshold dimension of a flaw from6 mmto3 mm, and reliability of their detection increased by 17–20 %.

Author Biographies

Volodymyr Storozhenko, Kharkiv National University of Radio Electronics Nauki ave., 14, Kharkiv, Ukraine, 61166

Doctor of technical sciences, Professor

Department of physics

Roman Orel, Kharkiv National University of Radio Electronics Nauki ave., 14, Kharkiv, Ukraine, 61166

PhD, Associate professor

Department of physics

Aleksandr Mjagky, Kharkiv National University of Radio Electronics Nauki ave., 14, Kharkiv, Ukraine, 61166

Postgraduate student

Department of physics

References

  1. Storozhenko, V. A., Maslova, V. A. (2004). Termografiya v diagnostike i nerazrushayushchem kontrole. Kharkiv: «Smit», 160.
  2. Maldague, P. V. (2001). Theory and Practice of Infrared Technology for Nondestructive Testing. John Wiley & Sons, Inc., 684.
  3. Vavilov, V. P. (2009). Infrakrasnaya termografiya i teplovoj kontrol'. Moscow: ID Spektr, 544.
  4. Lykov, A. V. (1967). Teoriya teploprovodnosti. Moscow: Vysshaya shkola, 602.
  5. Storozhenko, V. A., Malik, S. B., Myagkij, A. V. (2008). Optimizaciya rezhimov teplovoj defektoskopii na osnove teplofizicheskogo modelirovaniya. Vіsnik Nacіonal'nogo tekhnіchnogo unіversitetu «Harkіvs'kij polіtekhnіchnij іnstitut». Zbіrnik naukovih prac'. Tematichnij vipusk: Priladi і metodi nerujnіvnogo kontrolyu, 48, 84–91.
  6. Storozhenko, V. A., Malik, S. B., Myagkij, A. V., Tihij, V. G. (2013). Optimizaciya procedury teplovoj defektoskopii sotovyh konstrukcij. TD i NK, 3, 31–35.
  7. Storozhenko, V. A., Meshkov, S. N., Saprykin, S. A., Myagkij, A. V. (2009). Primenenie termograficheskogo metoda kontrolya dlya opredeleniya soderzhaniya zhidkoj fazy v gazoprovodah. Naukovo-tekhnіchnij zhurnal «Metodi ta priladi kontrolyu yakostі», 22, 117.
  8. Vavilov, V. P., Sin'yan', Guo, Shiryaev, V. V., Nesteruk, D. A. (2008). Teplovoj kontrol' korrozii v alyuminievyh panelyah samoletov. Defektoskopiya, 4, 48–57.
  9. Vavilov, V. P., Ivanov, A. I., Nesteruk, D. A., Shiryaev, V. V. (2010). Metody i ehksperimental'naya realizaciya impul'snogo teplovogo kontrolya plazmennyh pokrytij. Izvestiya TPU/ TPU, 317 (4), 5–9.
  10. Obbadi, A., Belattar, S. (2005). Characterization of delamination by a thermal method of non destructive testing. Proc. Vth International Workshop, Advances in Signal Processing for Non Destructive Evaluation of Materials, 203–208.
  11. Mallat, S. A. (2008). Wavelet Tour of Signal Processing. The Sparse Way. N. Y.: Academic Press, 805.
  12. Yella, S., Dougherty, M. S., Gupta, N. K. (2006). Artificial intelligence techniques for the automatic interpretation of data from non-destructive testing. Insight, 48 (1), 10–20. doi: 10.1784/insi.2006.48.1.10
  13. Fominceva, Yu. V., Nesteruk, D. A. (2014). Realizaciya metoda teplovyh voln v teplovom kontrole izdelij iz kompozitov. Vestnik nauk Sibiri, 2 (12), 235.
  14. Bazhenov, B. N., Mel'nik, S. I., Chumakov, A. G. (2007). Metod teplovogo kontrolya lopatok turbin s ispol'zovaniem teplovoj volny. Aviacionno-kosmicheskaya tekhnika i tekhnologiya, 9 (45), 97–100.
  15. Potapov, A. I., Syas'ko, V. A., Chertov, D. N. (2012). Vyyavlenie rassloenij i glubiny ih zaleganiya v ugleplastikovyh konstrukciyah s ispol'zovaniem vihretokovogo vida nerazrushayushchego kontrolya. Izvestiya vysshih uchebnyh zavedenij, 8, 66–69.
  16. Maldague, X. P. V., Jones, T. S., Kaplan, H., Marinetti, S., Prystay, M. (2001). Fundamentals of Infrared and Thermal Testing. in Nondestructive Handbook, Infrared and Thermal Testing. Vol. 3. Columbus, Ohio, ASNT Press, 718.
  17. Storozhenko, V. A., Lazorenko, O. V., Myagkij, A. V. (2013). Obrabotka rezul'tatov teplovoj defektoskopii sotovyh konstrukcij s cel'yu ponizhe-niya urovnya pomekh. Vіsnik NTU «HPІ». Serіya: Elektroenergetika ta peretvoryuval'na tekhnіka, 34 (1007), 108–112.

Downloads

Published

2016-10-30

How to Cite

Storozhenko, V., Orel, R., & Mjagky, A. (2016). Optimization of the procedure of thermal flaw detection of the honeycomb constructions by improving the accuracy of interference function. Eastern-European Journal of Enterprise Technologies, 5(5 (83), 12–18. https://doi.org/10.15587/1729-4061.2016.79563