Improvement of technological-mathematical model for the medium-term prediction of the work of a gas condensate field

Authors

  • Mykhailo Kutia A. N. Podgorny Institute for Mechanical Engineering Problems Dm. Pogarskogo str., 2/10, Kharkiv, Ukraine, 61046, Ukraine
  • Mykhailo Fyk National Technical University «Kharkiv Polytechnic Institute» Bagalіya str., 21, Kharkiv, Ukraine, 61002, Ukraine https://orcid.org/0000-0001-5154-6001
  • Oleg Kravchenko A. N. Podgorny Institute for Mechanical Engineering Problems Dm. Pogarskogo str., 2/10, Kharkiv, Ukraine, 61046, Ukraine
  • Stefan Palis Otto-von-Guericke-University Magdeburg Universitätsplatz, 2, Magdeburg, Deutschland, 39106, Germany
  • Ilya Fyk National Technical University «Kharkiv Polytechnic Institute» Bagalіya str., 21, Kharkiv, Ukraine, 61002, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2016.80073

Keywords:

gas­condensate field, intensification of inflow, Gas­field development indicators, mathematical model, gas­dynamic calculation

Abstract

Authors proposed analytical and algorithmic additions to the mathematical model of the prediction of the work of a gas­condensate field in the gas regime. The developed technique of improved calculations of the gas­dynamic parameters was verified by the actual history of a number of real fields in Ukraine. It demonstrated good results by accuracy in the course of medium­term prediction, which is important for estimating the efficiency of the measures for the intensification of well production. The new analytical construction of the systems of equations of the plane­radial inflow of gas to the well bottom and transport of gas by the vertical column allowed us to make the algorithm of iterative calculations more universal. The universality consists, in particular, in the possibility to predict the results of thermobaric changes in the gas flow and changes in the design parameters of a well after technological measures for the intensification of well production. The unique difference is the possibility of rapid evaluation of the prediction of intensification of a well with the interference into both the productive layer and the downhole equipment. Authors emphasized the need for a similar further improvement of the technological­mathematical model taking into account the new technologies of intensification, including innovative technological schemes of constructing the downhole equipment, equipment for the column of wells, wellhead equipment, multi­bottom and multi­row systems of extraction, extraction of gas with injection into the layer of special chemical agents.

The certain properties of the adaption correction of parameters made it possible to use the program realization of the developed technological­mathematical model at the Ukrainian­Swedish gas­extraction company TOV “Karpatygaz”.

Author Biographies

Mykhailo Kutia, A. N. Podgorny Institute for Mechanical Engineering Problems Dm. Pogarskogo str., 2/10, Kharkiv, Ukraine, 61046

Postgraduate student

Division of unconventional energy technologies

Mykhailo Fyk, National Technical University «Kharkiv Polytechnic Institute» Bagalіya str., 21, Kharkiv, Ukraine, 61002

PhD

Department of Oil, gas and condensate

Oleg Kravchenko, A. N. Podgorny Institute for Mechanical Engineering Problems Dm. Pogarskogo str., 2/10, Kharkiv, Ukraine, 61046

PhD

Deputy Director for Science

Stefan Palis, Otto-von-Guericke-University Magdeburg Universitätsplatz, 2, Magdeburg, Deutschland, 39106

Professor

Department of Systems Management with distributed parameters

Ilya Fyk, National Technical University «Kharkiv Polytechnic Institute» Bagalіya str., 21, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor

Department of "Oil, gas and condensate"

References

  1. Mirzadzhanzade, A. H., Kuznecov, O. L., Basniev, K. S., Aliev, Z. S. (2003). Osnovy tehnologii dobychi nefti i gaza: Nauchnoe izdanie. Moscow: Nedra, 880.
  2. Grishanenko, V. P., Zarubіn, Yu. O., Doroshenko, V. M. et. al. (2014). Naukovі osnovi vdoskonalennjа sistem rozrobki rodovish nafti і gazu. Kyiv, 454.
  3. Zakirov, S. N., Zakirov, Ye. S., Zakirov, I. S. et. al. (2004). Novye principy i tehnologii razrabotki mestorozhdenii nefti i gaza. Moscow: FGUP «PIK VINITI», 521.
  4. Deik, L. P. (2009). Osnovy razrabotki neftjаnyh i gazovyh mestorozhdenii. Moscow: OOO «Premium Inzhiniring», 570.
  5. Ertekin, T., Abou-Kassem, J. H., King, G. R. (2001). Basic Applied Reservoir Simulation. Vol. 7. Texas: SPE, Richardson, 421.
  6. Kanevskajа, R. D. (2002). Matematicheskoe modelirovanie gidrodinamicheskih processov razrabotki mestorozhdenii uglevodorodov. Moscow-Izhevsk: Institut komp'yuternyh issledovanii, 140.
  7. Forouzanfar, F., Reynolds, A. C. (2014). Joint optimization of number of wells, well locations and controls using a gradient-based algorithm. Chemical Engineering Research and Design, 92 (7), 1315–1328. doi: 10.1016/j.cherd.2013.11.006
  8. Mirzadzhanzade, A. H., Hasanov, M. M., Bahtizin, R. N. (2005). Modelirovanie processov neftegazodobychi. Nelineinost', neravnovesnost', neopredelennost'. Izhevsk: «Izhevskii institut komp'yuternyh issledovanii», 368.
  9. Fanchi, J. (2006). Principles of Applied Reservoir Simulation, 3rd Edition. Elsevier GPP, 532.
  10. Nasrabadi, H., Morales, A., Zhu, D. (2012). Well placement optimization: A survey with special focus on application for gas/gas-condensate reservoirs. Journal of Natural Gas Science and Engineering, 5, 6–16. doi: 10.1016/j.jngse.2011.10.002
  11. Kutjа, M. M., Skryl'nik, K. Yu., Shevchenko, V. V. (2014). Obshajа model' raschyota pokazatelei razrabotki gazokondensatnogo mestorozhdenijа. Vіsnik Nacіonal'nogo tehnіchnogo unіversitetu "KhPІ". Serіjа: Matematichne modelyuvannjа v tehnіcі ta tehnologіjаh, 39, 91–97.
  12. Kalugin, Y. I., Yakovlev, V. V., Kalugin, A. Y. (2015). Mathematical modeling and optimization of gas-condensate field development. Journal of Natural Gas Science and Engineering, 27, 1195–1204. doi: 10.1016/j.jngse.2015.09.063
  13. Fik, M. І., Sinyuk, A. B. (2014). Osobennosti konceptual'no-tehnologicheskogo pohoda pri otkrytii vtorogo dyhanijа neftegazokondensatnyh mestorozhdenii. Geopetrol' – 2014, 565–570.
  14. Vorkov, A. V., Ovchinnikova, S. A., Fedotenko, M. A. (2013). Teplovoi raschet rasteplenijа gruntov v priust'evyh zonah skvazhin. Izvestijа Samarskogo nauchnogo centra Rossiiskoi akademii nauk, 15 (4-2), 323–326.
  15. Fik, M. І. (2014). Utochnennjа rozrahunku efektivnostі roboti DKS v umovah faktichnih termogradіentіv ta suchasnih pokrittіv NKT. Naftogazova promislovіst' Ukraini, 1, 25–28.
  16. Aliev, Z. S., Bondarenko, V. V. (2002). Rukovodstvo po proektirovaniyu razrabotki gazovyh i gazoneftjаnyh mestorozhdenii. Pechora: Pechorskoe vremjа, 895.
  17. Mangold, M., Feng, L., Khlopov, D., Palis, S., Benner, P., Binev, D., Seidel-Morgenstern, A. (2015). Nonlinear model reduction of a continuous fluidized bed crystallizer. Journal of Computational and Applied Mathematics, 289, 253–266. doi: 10.1016/j.cam.2015.01.028
  18. Fyk, M. I., Hripko, E. I.; I. M. Fyk (Ed.) (2015). Razrabotka i yеkspluatacijа neftjаnyh i gazovyh mestorozhdenii. Kharkiv: Folio, 399.
  19. Soldatkov, S. G., Marushenko, I. V., Voronov, S. A. (2010). Yenergosberegayushie tehnologii utilizacii plastovih poter' gaza pri yеkspluatacii PHG. Gazovajа promyshlennost', 9, 63–65.
  20. Kravchenko, O. V., Veligockii, D. A., Avramenko, A. N., Habibullin, R. A. (2014). An improved technology of a complex influence on productive layers of oil and gas wells. Eastern-European Journal of Enterprise Technologies, 6 (5(72)), 4–9. doi: 10.15587/1729-4061.2014.29316
  21. CHornii, M. І., Metoshop, І. M., Kuzіv, І. M. (2013). Geologіchnі osnovi rozkrittjа і viprobuvannjа produktivnih plastіv. Іvano-Frankіvs'k, 306.
  22. Gladkov, E. A. (2012). Geologicheskoe i gidrodinamicheskoe modelirovanie mestorozhdenii nefti i gaza. Tomskii politehnicheskii universitet, 99.
  23. Fesenko, Y. L., Kryvulia, S. V., Syniuk, B. B., Fyk, M. I. (2013). Applied aspects of maintaining gas production in a gas condensate production field at a late stage of operation. NAFTA-GAZ, ROK LXIX, 10, 744–753.
  24. Islam, M. R., Hossain, M. E., Moussavizadegan, H., Mustafiz, S., Abou-Kassem, J. H. (2016). Advanced Petroleum Reservoir Simulation. 2nd Edition. Scrivener Publishing LLC, 572. doi: 10.1002/9781119038573
  25. Khasanov, М., Khabibullin, R., Krasnov, V., Pashali, A., Guk, V. (2009). A simple mechanistic model for void fraction and pressure-gradient prediction in vertical and inclined gas/liquid flow. SPE Production & Operations, 165–170.
  26. Khamitov, R. N., Kovalev, A. Yu. (2011). Upravlenie pogruzhnyimi dvigatelyami ustanovok elektrotsentrobezhnyih nasosov po minimumu summarnyih poter. Promyishlennaya energetika, 1, 42–46.

Downloads

Published

2016-10-30

How to Cite

Kutia, M., Fyk, M., Kravchenko, O., Palis, S., & Fyk, I. (2016). Improvement of technological-mathematical model for the medium-term prediction of the work of a gas condensate field. Eastern-European Journal of Enterprise Technologies, 5(8 (83), 40–48. https://doi.org/10.15587/1729-4061.2016.80073

Issue

Section

Energy-saving technologies and equipment