Simulation of influence of perturbation parameters on the new dual-channel capacitive mems gravimeter performance
DOI:
https://doi.org/10.15587/1729-4061.2016.85463Keywords:
dual-channel capacitive gravimeter, MEMS gravimeter, aviation gravimetric system, acceleration of gravity, sensing elementAbstract
The paper considers a new dual-channel capacitive MEMS gravimeter of the automated aviation gravimetric system whose accuracy exceeds that of gravimeters that exist at present. It describes in detail its design, which consists of two identical channels. Each of them contains capacitive elements. The connection in series of the adder, amplifier, digital module and OC is performed by means of shielded coaxial cables. All this provides for an increased accuracy in measuring the anomalies of the acceleration of gravity and eliminates the impact of error from vertical acceleration. The simulation of the suspension with complex shape was carried out: the magnitude of impact amounted to 10 µN, displacement of the end of the elastic element equaled 0.5 µm. Based on this refinement, it is possible to accurately determine the value of coefficient of elasticity of the folded suspension. The system was tested on stability by the Nyquist and Hurwitz criteria. Using PC, a change in the initial signal was examined for different values of perturbation amplitudes and frequency for the most unfavorable resonance cases of a dual-channel capacitive gravimeter. An analysis of data revealed that an increase in amplitudes of horizontal acceleration does not affect the amplitude of the forced DCG oscillations.
Thus, the aviation gravimetric system proposed provides for a significant increase in accuracy of measuring the anomalies in the acceleration of gravity, and is appropriate for implementation.References
- Bezvesil'na, O. M. (2007). Aviacijni gravimetrychni systemy ta gravimetry. Zhytomyr: ZhDTU, 604.
- Bykovskij, A. V., Polynkov, A. V. (2013). K voprosu o razrabotke malogabaritnogo ajerogravimetra. Vestnik MGTU im. N. Je. Baumana, 2 (14), 32–41.
- Girnjak, Ju. V. (2008). Mikroelektromehanichni systemy u suchasnomu pryladobuduvanni. Vymirjuval'na tehnika ta metrologija, 69, 97–102.
- Korobijchuk, I. V. (2015). Tehnichni zasoby avtomatyzacii'. Zhytomyr: ZhDTU, 904.
- Bezvesil'na, O. M., Tkachuk, A. G., Hyl'chenko, T. V. (2016). Pat. № 113038. Aviacijna gravimetrychna systema dlja vymirjuvan' anomalij pryskorennja syly tjazhinnja. MPK: G01V 7/02, G01V 7/16, G01P 15/09. No. a201512205; declareted: 09.12.2015; published: 25.11.2016, Bul. 22.
- Huang, Y., Olesen, A. V., Wu, M., Zhang, K. (2012). SGA-WZ: A New Strapdown Airborne Gravimeter. Sensors, 12 (12), 9336–9348. doi: 10.3390/s120709336
- Calvo, M., Hinderer, J., Rosat, S., Legros, H., Boy, J.-P., Ducarme, B., Zurn, W. (2014). Time stability of spring and superconducting gravimeters through the analysis of very long gravity records. Journal of Geodynamics, 80, 20–33. doi: 10.1016/j.jog.2014.04.009
- Agostino, G. D., Desogus, S., Germak, A., Origlia, C., Quagliotti, D., Berrino, G. et. al. (2008) The new IMGC-02 transportable absolute gravimeter: measurement apparatus and applications in geophysics and volcanology. Annals of geophysics, 51 (1), 39–49.
- Roussel, C., Verdun, J., Cali, J., Maia, M., d’ EU, J. F. (2015). Integration of a strapdown gravimeter system in an autonomous underwater vehicle. ISPRS – International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-5/W5, 199–206. doi: 10.5194/isprsarchives-xl-5-w5-199-2015
- Bykovskij, A. V., Polynkov, A. V., Arsen'ev, V. D. (2013). Ajerogravimetricheskij metod izmerenija gravitacionnyh anomalij. Aviakosmicheskoe priborostroenie, 12, 11–19.
- Bezvesil'na, O. M., Tkachuk, A. G., Koz'ko, K. S. (2014). Pat. № 105122. Aviacijna gravimetrychna systema dlja vymirjuvannja anomalij pryskorennja syly tjazhinnja. MPK G01V 7/00. No. a201304061; declareted: 01.04.2013; published: 10.04.2014, Bul. 7.
- Godovicyn, I. V., Sajkin, D. A., Fedorov, R. A., Amelichev, V. V.; Stempkovskiy, A. L. (Ed.) (2010). Raschet i modelirovanie osnovnyh parametrov differencial'nogo emkostnogo MJeMS-akselerometra. Moscow: IPPM RAN, 642–647.
- Shurygina, V. V. (2002). Dolgozhdannye MJeMS. Tehnologija malyh form. Jelektronika: Nauka, Tehnologija, Biznes, 4, 8–13.
- Sovremennye MJeMS-giroskopy i akselerometry. Available at: http://www.sovtest.ru/news/publications/sovremennye-mems_giroskopy-i-akselerometry/
- Implications of Emerging Micro and Nanotechnology (2002). Washington, D.C., 266. doi: 10.17226/10582
- Afonin, A. A., Sulakov, A. S., Jamashev, G. G., Mihajlin, D. A., Mirzojan, L. A., Kurmakov, D. V. (2013). O vozmozhnosti postroenija besplatformennogo upravljajushhego navigacionno–gravimetricheskogo kompleksa bespilotnogo letatel'nogo apparata. Trudy MAI, 66, 47–53.
- Bezvesil'naja, E. N., Hil'chenko, T. V. (2016). Analiz metodicheskih pogreshnostej dvuhkanal'nogo emkostnogo gravimetra. Sodruzhestvo, 3 (3), 51–54.
- Dekker, K., Verver, Ja. (1988). Ustojchivost' metodov Runge-Kutty dlja zhestkih nelinejnyh differencial'nyh uravnenij. Moscow: Mir, 334.
- Rukovodstvo po programmirovaniju na C#. Microsoft. Available at: https://msdn.microsoft.com/en–us/library/67ef8sbd.aspx
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Olena Bezvesilna, Tetiana Khylchenko, Andriy Tkachuk, Sergii Nechai
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.