Exploring the ways to intensify the dewatering process of polydisperse suspensions

Authors

DOI:

https://doi.org/10.15587/1729-4061.2016.86085

Keywords:

flocculation, polydisperse slimes, development of aggregation, strength of floccules, rate of deposition, intensification

Abstract

The influence of concentration and disperse composition on the process of flocculation of polydisperse coal slime is examined. It is established that the rate of deposition of the formed aggregates of floccules at constant consumption of flocculant is reduced with an increase in the concentration of solid phase in slime exceeding 30 g/dm3. This is explained by the fact that with an increase in the concentration of finely dispersed solid particles, the interphase surface increases, which leads to the non-uniform distribution of polymer at the surface of the particles and decreases the effectiveness of its adsorption. With an increase in the content of solid phase with coarseness exceeding 40 µm, the effectiveness of flocculation (settling velocity and strength of floccules) grows. We proposed a criterion of effectiveness of the process of formation of durable aggregates, which is the residual speed after mechanical action. This indicator characterizes the size of floccules and their strength. Dependences obtained in the course of experimental studies make it possible to intensify the process of forming durable floccules at the minimum consumption of flocculant, as well as to control the process of flocculation by regulating the concentration and disperse composition of polydisperse suspensions.

Author Biographies

Andrii Shkop, National technical university «Kharkov polytechnic institute» Bahaliya str., 21, Kharkiv, Ukraine, 61002

Department of chemical technique and industrial ecology

 

Musii Tseitlin, National technical university «Kharkov polytechnic institute» Bahaliya str., 21, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor

Department of chemical technique and industrial ecology

Oleksіi Shestopalov, National technical university «Kharkov polytechnic institute» Bahaliya str., 21, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of chemical technique and industrial ecology

References

  1. Khmelenko, Y. P. (2009). Analyz obуemov, sostava y sposobov pererabotky shlamov uhleobohatytelnykh fabryk. Heotekhnycheskaia mekhanyka, 82, 176–181.
  2. Polulyah, A. D., Pilov, P. I., Egurnov, A. I. et. al. (2012). Tehnologo-ekologicheskiy inzhiniring pri obogaschenii poleznyih iskopaemyih. Dnepropetrovsk: National Mining University, 712.
  3. Murphy, C., Bennett, C., Olinger, G., Cousins, B. (2012). Operation of belt filter presses at the rockspring development preparation plant. Corrxan. Availale at: http://www.corrxan.com/Coalprep_2012_Paper.pdf
  4. Deberdeev, I. Kh., Linev, B. I. at. al. (2006). Study of Interaction of Flotation Reagents with Fine Particles of Highly Mineralized Coal Slimes. Proceedings of XV International Congress of Coal Preparation. China, 1, 378–384.
  5. Eremeev, I. V. (2012). Analiz rezultatov obezvozhivaniya ugolnyih shlamov neflotatsionnoy krupnosti. Zbagachennja korysnyh kopalyn, 51 (92), 178–184.
  6. Shkop, А. (2015). Dewatering coal polydisperse suspensions. Eastern-European Journal of Enterprise Technologies, 2/6 (74), 44–49. doi: 10.15587/1729-4061.2015.40557
  7. Lee, K. E., Morad, N., Teng, T. T., Poh, B. T. (2012). Development, characterization and the application of hybrid materials in coagulation/flocculation of wastewater: A review. Chemical Engineering Journal, 203, 370–386. doi: 10.1016/j.cej.2012.06.109
  8. Yu, J., Wang, D., Ge, X., Yan, M., Yang, M. (2006). Flocculation of kaolin particles by two typical polyelectrolytes: A comparative study on the kinetics and floc structures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 290 (1-3), 288–294. doi: 10.1016/j.colsurfa.2006.05.040
  9. Guibal, E., Roussy, J. (2007). Coagulation and flocculation of dye-containing solutions using a biopolymer (Chitosan). Reactive and Functional Polymers, 67 (1), 33–42. doi: 10.1016/j.reactfunctpolym.2006.08.008
  10. Konovalova, T. A., Veksler, G. B., Lavrinenko, A. A., Gol'berg, G. Ju. (2014). Primenenie flokuljantov dlja povyshenija jekologicheskoj bezopasnosti vodno-shlamovyh shem ugleobogatitel'nyh fabric. Izvestija MGTU, 3/1 (19), 5–10.
  11. Sabah, E., Erkan, Z. E. (2006). Interaction mechanism of flocculants with coal waste slurry. Fuel, 85 (3), 350–359. doi: 10.1016/j.fuel.2005.06.005
  12. Ofori, P., Nguyen, A. V., Firth, B., McNally, C., Ozdemir, O. (2011). Shear-induced floc structure changes for enhanced dewatering of coal preparation plant tailings. Chemical Engineering Journal, 172 (2-3), 914–923. doi: 10.1016/j.cej.2011.06.082
  13. Ji, Y., Lu, Q., Liu, Q., Zeng, H. (2013). Effect of solution salinity on settling of mineral tailings by polymer flocculants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 430, 29–38. doi: 10.1016/j.colsurfa.2013.04.006
  14. Kumar, S., Bhattacharya, S., Mandre, N. R. (2014). Characterization and flocculation studies of fine coal tailings. Journal of the Southern African Institute of Mining and Metallurgy, 114 (11), 945–949.
  15. Sun, W., Long, J., Xu, Z., Masliyah, J. H. (2008). Study of Al(OH)3-Polyacrylamide-Induced Pelleting Flocculation by Single Molecule Force Spectroscopy. Langmuir, 24 (24), 14015–14021. doi: 10.1021/la802537z
  16. Golberg, G. Yu., Lavrinenko, A. A. (2015). Obrazovanie, suschestvo-vanie i razrushenie flokulyatsionnyih struktur. Mining Informational and Analytical Bulletin, 11, 47–54.

Downloads

Published

2016-12-27

How to Cite

Shkop, A., Tseitlin, M., & Shestopalov, O. (2016). Exploring the ways to intensify the dewatering process of polydisperse suspensions. Eastern-European Journal of Enterprise Technologies, 6(10 (84), 35–40. https://doi.org/10.15587/1729-4061.2016.86085