Analysis of role of time in the production process in a 4D space
DOI:
https://doi.org/10.15587/1729-4061.2016.86535Keywords:
production process, time in a 4D space, production factors, collinearity of vectors, time incrementAbstract
It was established that theory and practice of calculations of “costs-time” and attempts to examine them in a 4D space are not systemic in nature. Production process is not examined in the system, in which the result of using resources over time is not the object of an interconnected and interdependent process. Time is considered as an independent variable implicitly, which significantly narrows the possibilities of prognostic calculations when introducing advanced technologies
Entering the metric space, geometric interpretation of space-and-time, makes it possible to establish the essence of time in a specific production process. It is manifested in the fact that the system of vectors of increment in time is collinear and co-directed to the corresponding vectors of an increment in volume of works. In this case, the vector of increment in time corresponds to each vector of increment in volume of works. The infinite number of vectors of increment in time corresponds to the infinite number of vectors of increment in volume of works, which is characteristic for a specific production process, causing “compressibility” and “stretching” of the time parameter along with the changes in increments in volume of work and productivity.
The example of calculating prospective volumes of work in a 4D space, including basic production resources and time, was performed. The calculation demonstrated the possibility of a considerable (up to 40 %) increase in accuracy of determining the required parameter.
References
Kazarian, V. P. (1980). Poniatye vremeny v strukture nauchnoho znanyia. Moscow: Izd-vo MHU, 1980. – 225 s.
Smolin, L. (2006). The trouble with physics: the rise of string theory, the fall of a science, and what comes next. Boston: Houghton Mifflin, 2006, 416.
Zynalyev, M. T. (2015). Fyzyka vremeny. LAP LAMBERT Academic Publishing, 364.
Shumpeter, J. (2004). Ystoryia ekonomycheskoho analyza. In 3 volumes. Vol. 3. SpB.: Ekonomycheskaia shkola, 1353.
Tinbergen, J. (1974). The Dynamics of Business Cycles: A Study in Economic Fluctuations. Chicago: U of Chicago P, 1974.
MarketsandMarkets By: Report Code: SE 2497 Publishing Date: April 2016/3D & 4D Technology Market by Technology – 2022 MarketsandMarkets. Available at: http://www.marketsandmarkets.com/Market-Reports/3d-4d-technology-market-646.html
Gaikwad, P. G., Prashant P. Nagrale, Nilesh Patil (2016). Analysis of Time and Cost Overruns in Road Project. Journal of Construction Engineering, Technology & Management, 6 (2), 52–57.
Li, M., Wu, G. (2014). Robust Optimization for Time-Cost Tradeoff Problem in Construction Projects. Abstract and Applied Analysis, 2014, 1–7. doi: 10.1155/2014/926913
Terry, S. B., Lucko, G. (2012). Algorithm for Time-Cost Tradeoff Analysis in Construction Projects by Aggregating Activity-Level Singularity Functions. Construction Research Congress 2012. doi: 10.1061/9780784412329.024
Dahade, U. D., Hedaoo, N. A., Gupta, L. M., Ronghe, G. N. (2009). Time and Cost Evaluation of Construction of Steel Framed Composite Floor with Precast Concrete Floor Structure. 26th International Symposium on Automation and Robotics in Construction (ISARC 2009), 139–148.
Castro-Lacouture, D., Süer, G. A., Gonzalez-Joaqui, J., Yates, J. K. (2009). Construction Project Scheduling with Time, Cost, and Material Restrictions Using Fuzzy Mathematical Models and Critical Path Method. Journal of Construction Engineering and Management, 135 (10), 1096–1104. doi: 10.1061/(asce)0733-9364(2009)135:10(1096)
Berthaut, F., Pellerin, R., Perrier, N., Hajji, A. (2014). Time-cost trade-offs in resource-constraint project scheduling problems with overlapping modes. International Journal of Project Organisation and Management, 6 (3), 215. doi: 10.1504/ijpom.2014.065259
Koo, B., Fischer, M. (2000). Feasibility Study of 4D CAD in Commercial Construction. Journal of Construction Engineering and Management, 126 (4), 251–260. doi: 10.1061/(asce)0733-9364(2000)126:4(251)
Liapi, K. A. (2003). 4D visualization of highway construction projects. Proceedings on Seventh International Conference on Information Visualization, 2003. IV 2003. doi: 10.1109/iv.2003.1218054
Chau, K. W., Anson, M., Zhang, J. P. (2005). 4D dynamic construction management and visualization software: 1. Development. Automation in Construction, 14 (4), 512–524. doi: 10.1016/j.autcon.2004.11.002
Zanen, P. P. A., Hartmann, T., Al-Jibouri, S. H. S., Heijmans, H. W. N. (2013). Using 4D CAD to visualize the impacts of highway construction on the public. Automation in Construction, 32, 136–144. doi: 10.1016/j.autcon.2013.01.016
Platt, A. (Ed.) (2007). 4D CAD for Highwaiy construction projects. Computer Integrated Construction Research Program, 117.
Kleiner, H. B. (1986). Proyzvodstvennie funktsyy. Teoryia, metodi, prymenenye. Moscow: Fynansi y statystyka, 239.
Borovyk, V. S., Borovyk, V. V., Prokopenko, Yu. E. (2013). Model upravlenyia vnedrenyem novoi tekhnolohyy na osnove proyzvodstvennoi funktsyy. Ekonomycheskyi analyz: teoryia y praktyka, 42 (345), 25–30.
Bessonov, V. A. (2016). Problemi postroenyia proyzvodstvennikh funktsyi v rossyiskoi perekhodnoi ekonomyke. Available at: http://www.economicus.ru/macroeconomica/readings/Prois_funk.pdf (Last accessed: 11.04.2016).
Einstein, A. (1905). Zur Elektrodynamik bewegter Körper. Annalen Der Physik, 322 (10), 891–921. doi: 10.1002/andp.19053221004
Borovik, V., Borovik, V. (2016). Modelling of crystallization process of polymeric composition in space and time. Eastern-European Journal Enterprise Technologies, 3 (5 (81)), 4–10. doi: 10.15587/1729-4061.2016.69383
Bohdanov, A. A. (1989). Tektolohyia: vseobshchaia orhanyzatsyonnaia nauka. 3rd edition. Moscow. Available at: http://gtmarket.ru/laboratory/basis/5909 (Last accessed: 07.10.2016).
Mykhailov, V. S. (1988). Teoryia upravlenyia. Kyiv: Vyschsha shkola, 312.
Vektornii analyz. Matematycheskaia entsyklopedyia. Vol. 1 (1977). Moscow: Izdatelstvo «Sovetskaia entsyklopedyia», 648.
Pan, V. (2012) Fyzyka pryrodi prychynno-sledstvennikh svoistv prostranstvennoho fyzycheskoho vremeny. Vserossijskij zhurnal nauchnyh publikacij, 4 (14), 2–3.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Vitaly Borovik, Vitaly Borovik

This work is licensed under a Creative Commons Attribution 4.0 International License.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons CC BY , which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.