An investigation of obtaining patterns, structure and diffusion properties of biomedical purpose hydrogel membranes

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.92368

Keywords:

hydrogel membrane, 2-hydroxyethylmethacrylate, polyvinylpyrrolidone, structural grid, encapsulation, mass transfer, sustained release

Abstract

The obtaining patterns of hydrogel membrane coatings based on 2-hydroxyethylmethacrylate/polyvinylpyrrolidone copolymers were investigated. Temperature modes of their synthesis were justified and efficient initiating system – a complex of polyvinylpyrrolidone with iron sulfate, which allows low-temperature synthesis was selected. The structural parameters of the grid and membrane permeability for model substances (electrolytes) and medicines (on the example of sodium diclofenac) were studied. The interrelation of structure and composition of hydrogels with their diffusion-transport properties was established. The mechanism of components transfer from encapsulated hydrogel particles through the membrane was described. This mechanism includes the steps of swelling of the hydrogel membrane, molecular diffusion inside the capsule, mass transfer through the membrane to the surrounding solution. The model of mass transfer of the ensemble of spherical particles coated with a polymeric hydrogel shell was proposed. The model makes it possible to predict the duration and rate of release of the target component from encapsulated particles. The process flow diagram of hydrogel membrane coatings forming was developed to create encapsulated forms of sustained drug release.

Author Biographies

Volodymyr Skorokhoda, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

Doctor of Technical Sciences, Professor

Department of Chemical Technology of Plastics Processing 

Yuriy Melnyk, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

Senior Researcher

Department of Chemical Technology of Plastics Processing 

Volodymyr Shalata, Research Center JSC “Halychpharm” Opryshkivska str., 6/8, Lviv, Ukraine, 79024

PhD

Taras Skorokhoda, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

PhD, Assistant

Department of Сivilian Іafety

Sofiia Suberliak, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

Engineer

Department of Chemical Technology of Plastics Processing 

References

  1. Donbrow, M. (Ed.) (1991). Microcapsules and Nanoparticles in Medicine and Pharmacy. London: CRC Press, 362.
  2. Srivastava, A., Yadav, T., Sharma, S., Nayak, A., Akanksha Kumari, A., Mishra, N. (2016). Polymers in Drug Delivery. Journal of Biosciences and Medicines, 04 (01), 69–84. doi: 10.4236/jbm.2016.41009
  3. Lin, Y.-H., Liang, H.-F., Chung, C.-K., Chen, M.-C., Sung, H.-W. (2005). Physically crosslinked alginate/N,O-carboxymethyl chitosan hydrogels with calcium for oral delivery of protein drugs. Biomaterials, 26 (14), 2105–2113. doi: 10.1016/j.biomaterials.2004.06.011
  4. Mahdavinia, G. R., Etemadi, H., Soleymani, F. (2015). Magnetic/pH-responsive beads based on caboxymethyl chitosan and κ-carrageenan and controlled drug release. Carbohydrate Polymers, 128, 112–121. doi: 10.1016/j.carbpol.2015.04.022
  5. Sun, J., Chen, J., Yang, L., Wang, S., Li, Z., Wu, H. (2007). Synthesis and characterization of a pH-sensitive hydrogel made of pyruvic-acid-modified chitosan. Journal of Biomaterials Science, Polymer Edition, 18 (1), 35–44. doi: 10.1163/156856207779146132
  6. Milasinovic, N., Krusic, M. K., Knezevic-Jugovic, Z., Filipovic, J. (2010). Hydrogels of N-isopropylacrylamide copolymers with controlled release of a model protein. International Journal of Pharmaceutics, 383 (1-2), 53–61. doi: 10.1016/j.ijpharm.2009.09.001
  7. Ostrecova, N. I., Adamjan, A. A., Kopyl'cov, A. A., Nikolaeva-Fedorova, A. B. (2003). Poliakrilamidnye geli, ih bezopasnost' i jeffektivnost' (obzor). Annaly plasticheskoj, rekonstruktivnoj i jesteticheskoj hirurgii, 3, 72–87. Available at: http://www.borovikov.ru/articles_professional_8_3.htm
  8. Suberlyak, O. V., Semenyuk, N. B., Dudok, G. D., Skorokhoda, V. I. (2012). Regular trends in synthesis of sorption-active granular copolymers of methacrylic acid esters with polyvinylpyrrolidone. Russian Journal of Applied Chemistry, 85 (5), 830–838. doi: 10.1134/s1070427212050254
  9. Suberlyak, О. V., Mel’nyk, Y. Y., Skorokhoda, V. I. (2015). Regularities of Preparation and Properties of Hydrogel Membranes. Materials Science, 50 (6), 889–896. doi: 10.1007/s11003-015-9798-8
  10. Seljakova, V., Kashevarova, Ju. (1982). Metody analiza akrilatov i metakrilatov. Moscow: Himija, 170.
  11. Dubjaga, V. P., Perepechkin, L. P., Katalevskij, E. E. (1981). Polimernye membrany. Moscow: Himija, 232.
  12. Rejtlinger, S. A. (1974). Pronicaemost' polimernyh materialov. Moscow: Himija, 272.
  13. Shvarc, A. G., Grigorovskaja, V. A. (1965). K voprosu ob ocenke koncentracii poperechnyh svjazej vulkanizatov. Kolloidnyj zhurnal, 27 (1), 30–34.
  14. Suberljak, O. V., Skorohoda, V. J., Demchuk, I. A., Mel'nyk, Ju. Ja., Groshovyj, T. A. (2007). Ridkostrukturovani gidrogelevi membrany dlja system kontrol'ovanogo vyvil'nennja. Farmacevtychnyj chasopys, 3, 39–43. Available at: http://ojs.tdmu.edu.ua/index.php/pharm-chas/article/view/3175/2965
  15. Matrosov, A. M. (2001). Marle 6. Reshenie zadach vysshej matematiki i mehaniki. Sankt-Peterburg: BHV-Peterburg, 528.

Downloads

Published

2017-02-17

How to Cite

Skorokhoda, V., Melnyk, Y., Shalata, V., Skorokhoda, T., & Suberliak, S. (2017). An investigation of obtaining patterns, structure and diffusion properties of biomedical purpose hydrogel membranes. Eastern-European Journal of Enterprise Technologies, 1(6 (85), 50–55. https://doi.org/10.15587/1729-4061.2017.92368

Issue

Section

Technology organic and inorganic substances