Introducing the principle of constructing an aviation gravimetric system with any type of gravimeter
DOI:
https://doi.org/10.15587/1729-4061.2017.92941Keywords:
gravimeter, acceleration of gravity, gravitational field of the Earth, aviation gravimetric systemAbstract
Measurements of parameters of the Earth’s gravitational field from aircraft are the most important because they make it possible to carry out measurements in the zones of poles areas the Earth, the equator, mountain ranges and other hard to reach areas of the Earth. Studying these parameters is necessary for the exploration of mineral resources, forecasting earthquakes, tsunamis, etc.
We put forth general principles for constructing aviation gravimetric system (AGS) with any type of gravimeter. A list of basic components of AGS is compiled: gravimeter of any type, system for determining navigation parameters, altitude gauge, and onboard computing machine. We analyzed methodological errors of the system. Precision requirements to the components of AGS are formulated, provided the accuracy of AG measurements is 1–2 mGal. The choice of natural oscillation frequency of the AGS gravimeter is substantiated, which is 0.1 s-1. The equation is derived that takes into account correction from the impact of angular velocity of the Earth rotation. We substantiated the application of a dual-channel method to construct an AGS gravimeter. Expedience of employing neural networks is demonstrated to eliminate instrumental errors of the AGS gravimeters.References
- Bezvesilna, A. (2007). Aircraft Systems and gravity Gravity. Zytomyr: ZSTU, 604.
- Gravimeter CG-5 AutoGrav. Geocenter-Moscow. Available at: http://geocentr-msk.ru/content/view/441/137
- String GRAVIMETRY "Graviton-M". JSC "SSPE Aerogeophysica". Available at: http://www.aerogeo.ru/index.php?option=com_content&view=category&layout=blog&id=25&Itemid=17&lang=ru
- Gravimetry GT-2A. JSC "SSPE Aerogeophysica". Available at: http://www.aerogeo.ru/index.php?option=com_content&view=category&layout=blog&id=25&Itemid=17&lang=ru
- Inertial-hravymetrycheskyy complex MAG-1A. Federal Gosudarstvennoye unytarnoe scientific proizvodstvennoe predpriyatie "HEOLOHORAZVEDKA". Available at: http://geolraz.com/page/GSA-2010/
- Mobile gravimeter "Gavel-AM". JSC "Concern" CRI "Appliance". Available at: http://www.elektropribor.spb.ru/prod/rgydro_1
- TAGS-6 Gravity Meter (Turnkey Airborne Gravity System) with Aerograv Data Processing Software. Available at: http://www.microglacoste.com/tags-6.php
- Bykovskij, A. V., Polynkov, A. V. (2013). To a question on the development of small-sized GRAVIMETRY. Vestnik MSTU. Bauman, 2 (14), 32–41.
- Osborne, I. S. (2016). An on-chip cold-atom gravimeter. Science, 354 (6317), 1246–1247. doi: 10.1126/science.354.6317.1246-f
- Afonin, A. A., Sulakov, A. S., Jamashev, G. G., Mihajlin, D. A., Mirzojan, L. A., Kurmakov, D. V. (2013). Opportunities building a besplatformennoho upravlyayuscheho navyhatsyonno-hravymetrycheskoho complex bespylotnoho letatelnoho apparatus. Trudy MAI, 66, 47–53.
- Huang, Y., Olesen, A. V., Wu, M., Zhang, K. (2012). SGA-WZ: A New Strapdown Airborne Gravimeter. Sensors, 12 (12), 9336–9348. doi: 10.3390/s120709336
- Calvo, M., Hinderer, J., Rosat, S., Legros, H., Boy, J.-P., Ducarme, B., Zurn, W. (2014). Time stability of spring and superconducting gravimeters through the analysis of very long gravity records. Journal of Geodynamics, 80, 20–33. doi: 10.1016/j.jog.2014.04.009
- Agostino, G. D., Desogus, S., Germak, A., Origlia, C., Quagliotti, D., Berrino, G. et. al. (2008). The new IMGC-02 transportable absolute gravimeter: measurement apparatus and applications in geophysics and volcanology. Annals of geophysics, 51 (1), 39–49.
- Roussel, C., Verdun, J., Cali, J., Maia, M., d’ EU, J. F. (2015). Integration of a strapdown gravimeter system in an autonomous underwater vehicle. ISPRS – International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-5/W5, 199–206. doi: 10.5194/isprsarchives-xl-5-w5-199-2015
- Kazama, T., Hayakawa, H., Higashi, T., Ohsono, S., Iwanami, S., Hanyu, T. et. al. (2013). Gravity measurements with a portable absolute gravimeter A10 in Syowa Station and Langhovde, East Antarctica. Polar Science, 7 (3-4), 260–277. doi: 10.1016/j.polar.2013.07.001
- Bezvesil'na, O. M., Koz'ko, K. S., Tkachuk, A. G., Chepjuk, L. O. (2015). Modern Gravity gravimetric aviation system. Geofizicheskij zhurnal, 37 (2), 86–94.
- Korobiichuk, I., Bezvesilna, O., Tkachuk, A., Chilchenko, T., Nowicki, M., Szewczyk, R. (2016). Design of Piezoelectric Gravimeter for Automated Aviation Gravimetric System. Journal of Automation, Mobile Robotics & Intelligent Systems, 10 (1), 43–47. doi: 10.14313/jamris_1-2016/6
- Korobiichuk, I., Bezvesilna, O., Tkachuk, A., Nowicki, M., Szewczyk, R. (2016). Piezoelectric Gravimeter of the Aviation Gravimetric System. Advances in Intelligent Systems and Computing, 753–761. doi: 10.1007/978-3-319-29357-8_65
- Bezvesilna, O. M., Chepyuk, L. A. (2015). String gravimeter gravimetric aviation system. Zhitomir: ZSTU, 208.
- Bezvesilna, O., Tkachuk, A., Khylchenko, T., Chepyuk, L. (2015). Aviation gravimetric system with the vibrating low frequency gravimeter. Technological complexes, 1/2 (12), 46–51.
- Korobiichuk, I., Bezvesilna, O., Kachniarz, M., Tkachuk, A., Chilchenko, T. (2016). Two-Channel MEMS Gravimeter of the Automated Aircraft Gravimetric System. Advances in Intelligent Systems and Computing, 481–487. doi: 10.1007/978-3-319-48923-0_51
- Bezvesil'na, O. M., Tkachuk, A. G., Hyl'chenko, T. V. (2016). Development of a new dual-channel gravimeter for measuring the gravitational acceleration. Technology audit and production reserves, 1 (2 (27)), 41–44. doi: 10.15587/2312-8372.2016.58556
- Bykovskij, A. V., Polynkov, A. V., Arsen'ev, V. D. (2013). Ajerogravimetricheskij metod izmerenija gravitacionnyh anomalij. Aviakosmicheskoe priborostroenie, 12, 11–19.
- Kaufman, A. A. (2011). Principles hravymetryy method. Tver, 360.
- Resolution of the 3rd CGPM (1901). BIPM. Available at: http://www.bipm.org/en/CGPM/db/3/2/
- Khudzinsky, L. L., Bartashevich, L. M., Sorokin, V. L. (2002). Investigation absolute ballistic gravimeter and ways to improve the accuracy of measurements. Vol. 3. Geology, geochemistry and geophysics at the turn of the century.
- Matveev, V. V. (2014). Engineering analysis errors strapdown inertial navigation system. Izvestiya of the Tula State University. Engineering science, 9-2, 251–267.
- Bezvesilna, О. М., Korobiichuk, I., Tkachuk, A., Nowicki, M., Szewczyk, R. (2015). Stabilization system of aviation gravimeter. International Journal of Scientific & Engineering Research, 6 (8), 956–959.
- Bezvesilna, O. (2013). Using a neural network in the complex orientation and navigation of aircraft gravimetric system. Technology systems, 1 (7), 83–90.
- Haykin, S. (2006). Neural Networks. Full course. Мoscow: Izdatel'skij dom "Vil'jams", 1104.
- Tsaregorodtsev, V. G. (2005). Parallel Implementation of Back-Propagation Neural Network Software on SMP Computers. Parallel Computing Technologies, 186–192. doi: 10.1007/11535294_16
- Korobiychuk, I. V. (2015). Technical automation. Zhytomyr: ZSTU, 904.
- Bahvalov, N. S., Zhidkov, N. P., Kobel'kov, G. M. (2001). Numerical methods. Мoscow: Laboratory of Basic Knowledge, 630.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Olena Bezvesilna, Andriy Tkachuk, Larina Chepyuk, Sergii Nechai, Tetiana Khylchenko
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.