Introducing the principle of constructing an aviation gravimetric system with any type of gravimeter

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.92941

Keywords:

gravimeter, acceleration of gravity, gravitational field of the Earth, aviation gravimetric system

Abstract

Measurements of parameters of the Earth’s gravitational field from aircraft are the most important because they make it possible to carry out measurements in the zones of poles areas the Earth, the equator, mountain ranges and other hard to reach areas of the Earth. Studying these parameters is necessary for the exploration of mineral resources, forecasting earthquakes, tsunamis, etc.

We put forth general principles for constructing aviation gravimetric system (AGS) with any type of gravimeter. A list of basic components of AGS is compiled: gravimeter of any type, system for determining navigation parameters, altitude gauge, and onboard computing machine. We analyzed methodological errors of the system. Precision requirements to the components of AGS are formulated, provided the accuracy of AG measurements is 1–2 mGal. The choice of natural oscillation frequency of the AGS gravimeter is substantiated, which is 0.1 s-1. The equation is derived that takes into account correction from the impact of angular velocity of the Earth rotation. We substantiated the application of a dual-channel method to construct an AGS gravimeter. Expedience of employing neural networks is demonstrated to eliminate instrumental errors of the AGS gravimeters.

Author Biographies

Olena Bezvesilna, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute» Peremohy ave., 37, Kyiv, Ukraine, 03057

Doctor of Technical Sciences, Professor

Department of Instrumentation

Andriy Tkachuk, Zhytomyr State Technological University Chernyahivskoho str., 103, Zhytomyr, Ukraine, 10005

PhD

Department of automation and computer-integrated technologies named after prof. B. B. Samotokin

Larina Chepyuk, Zhytomyr State Technological University Chernyahivskoho str., 103, Zhytomyr, Ukraine, 10005

PhD, Associate professor

Department of automation and computer-integrated technologies named after prof. B. B. Samotokin

Sergii Nechai, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute» Peremohy ave., 37, Kyiv, Ukraine, 03057

PhD, Associate professor

Department of Instrumentation

Tetiana Khylchenko, Zhytomyr State Technological University Chernyahivskoho str., 103, Zhytomyr, Ukraine, 10005

Postgraduate student

Department of automation and computer-integrated technologies named after prof. B. B. Samotokin

References

  1. Bezvesilna, A. (2007). Aircraft Systems and gravity Gravity. Zytomyr: ZSTU, 604.
  2. Gravimeter CG-5 AutoGrav. Geocenter-Moscow. Available at: http://geocentr-msk.ru/content/view/441/137
  3. String GRAVIMETRY "Graviton-M". JSC "SSPE Aerogeophysica". Available at: http://www.aerogeo.ru/index.php?option=com_content&view=category&layout=blog&id=25&Itemid=17&lang=ru
  4. Gravimetry GT-2A. JSC "SSPE Aerogeophysica". Available at: http://www.aerogeo.ru/index.php?option=com_content&view=category&layout=blog&id=25&Itemid=17&lang=ru
  5. Inertial-hravymetrycheskyy complex MAG-1A. Federal Gosudarstvennoye unytarnoe scientific proizvodstvennoe predpriyatie "HEOLOHORAZVEDKA". Available at: http://geolraz.com/page/GSA-2010/
  6. Mobile gravimeter "Gavel-AM". JSC "Concern" CRI "Appliance". Available at: http://www.elektropribor.spb.ru/prod/rgydro_1
  7. TAGS-6 Gravity Meter (Turnkey Airborne Gravity System) with Aerograv Data Processing Software. Available at: http://www.microglacoste.com/tags-6.php
  8. Bykovskij, A. V., Polynkov, A. V. (2013). To a question on the development of small-sized GRAVIMETRY. Vestnik MSTU. Bauman, 2 (14), 32–41.
  9. Osborne, I. S. (2016). An on-chip cold-atom gravimeter. Science, 354 (6317), 1246–1247. doi: 10.1126/science.354.6317.1246-f
  10. Afonin, A. A., Sulakov, A. S., Jamashev, G. G., Mihajlin, D. A., Mirzojan, L. A., Kurmakov, D. V. (2013). Opportunities building a besplatformennoho upravlyayuscheho navyhatsyonno-hravymetrycheskoho complex bespylotnoho letatelnoho apparatus. Trudy MAI, 66, 47–53.
  11. Huang, Y., Olesen, A. V., Wu, M., Zhang, K. (2012). SGA-WZ: A New Strapdown Airborne Gravimeter. Sensors, 12 (12), 9336–9348. doi: 10.3390/s120709336
  12. Calvo, M., Hinderer, J., Rosat, S., Legros, H., Boy, J.-P., Ducarme, B., Zurn, W. (2014). Time stability of spring and superconducting gravimeters through the analysis of very long gravity records. Journal of Geodynamics, 80, 20–33. doi: 10.1016/j.jog.2014.04.009
  13. Agostino, G. D., Desogus, S., Germak, A., Origlia, C., Quagliotti, D., Berrino, G. et. al. (2008). The new IMGC-02 transportable absolute gravimeter: measurement apparatus and applications in geophysics and volcanology. Annals of geophysics, 51 (1), 39–49.
  14. Roussel, C., Verdun, J., Cali, J., Maia, M., d’ EU, J. F. (2015). Integration of a strapdown gravimeter system in an autonomous underwater vehicle. ISPRS – International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-5/W5, 199–206. doi: 10.5194/isprsarchives-xl-5-w5-199-2015
  15. Kazama, T., Hayakawa, H., Higashi, T., Ohsono, S., Iwanami, S., Hanyu, T. et. al. (2013). Gravity measurements with a portable absolute gravimeter A10 in Syowa Station and Langhovde, East Antarctica. Polar Science, 7 (3-4), 260–277. doi: 10.1016/j.polar.2013.07.001
  16. Bezvesil'na, O. M., Koz'ko, K. S., Tkachuk, A. G., Chepjuk, L. O. (2015). Modern Gravity gravimetric aviation system. Geofizicheskij zhurnal, 37 (2), 86–94.
  17. Korobiichuk, I., Bezvesilna, O., Tkachuk, A., Chilchenko, T., Nowicki, M., Szewczyk, R. (2016). Design of Piezoelectric Gravimeter for Automated Aviation Gravimetric System. Journal of Automation, Mobile Robotics & Intelligent Systems, 10 (1), 43–47. doi: 10.14313/jamris_1-2016/6
  18. Korobiichuk, I., Bezvesilna, O., Tkachuk, A., Nowicki, M., Szewczyk, R. (2016). Piezoelectric Gravimeter of the Aviation Gravimetric System. Advances in Intelligent Systems and Computing, 753–761. doi: 10.1007/978-3-319-29357-8_65
  19. Bezvesilna, O. M., Chepyuk, L. A. (2015). String gravimeter gravimetric aviation system. Zhitomir: ZSTU, 208.
  20. Bezvesilna, O., Tkachuk, A., Khylchenko, T., Chepyuk, L. (2015). Aviation gravimetric system with the vibrating low frequency gravimeter. Technological complexes, 1/2 (12), 46–51.
  21. Korobiichuk, I., Bezvesilna, O., Kachniarz, M., Tkachuk, A., Chilchenko, T. (2016). Two-Channel MEMS Gravimeter of the Automated Aircraft Gravimetric System. Advances in Intelligent Systems and Computing, 481–487. doi: 10.1007/978-3-319-48923-0_51
  22. Bezvesil'na, O. M., Tkachuk, A. G., Hyl'chenko, T. V. (2016). Development of a new dual-channel gravimeter for measuring the gravitational acceleration. Technology audit and production reserves, 1 (2 (27)), 41–44. doi: 10.15587/2312-8372.2016.58556
  23. Bykovskij, A. V., Polynkov, A. V., Arsen'ev, V. D. (2013). Ajerogravimetricheskij metod izmerenija gravitacionnyh anomalij. Aviakosmicheskoe priborostroenie, 12, 11–19.
  24. Kaufman, A. A. (2011). Principles hravymetryy method. Tver, 360.
  25. Resolution of the 3rd CGPM (1901). BIPM. Available at: http://www.bipm.org/en/CGPM/db/3/2/
  26. Khudzinsky, L. L., Bartashevich, L. M., Sorokin, V. L. (2002). Investigation absolute ballistic gravimeter and ways to improve the accuracy of measurements. Vol. 3. Geology, geochemistry and geophysics at the turn of the century.
  27. Matveev, V. V. (2014). Engineering analysis errors strapdown inertial navigation system. Izvestiya of the Tula State University. Engineering science, 9-2, 251–267.
  28. Bezvesilna, О. М., Korobiichuk, I., Tkachuk, A., Nowicki, M., Szewczyk, R. (2015). Stabilization system of aviation gravimeter. International Journal of Scientific & Engineering Research, 6 (8), 956–959.
  29. Bezvesilna, O. (2013). Using a neural network in the complex orientation and navigation of aircraft gravimetric system. Technology systems, 1 (7), 83–90.
  30. Haykin, S. (2006). Neural Networks. Full course. Мoscow: Izdatel'skij dom "Vil'jams", 1104.
  31. Tsaregorodtsev, V. G. (2005). Parallel Implementation of Back-Propagation Neural Network Software on SMP Computers. Parallel Computing Technologies, 186–192. doi: 10.1007/11535294_16
  32. Korobiychuk, I. V. (2015). Technical automation. Zhytomyr: ZSTU, 904.
  33. Bahvalov, N. S., Zhidkov, N. P., Kobel'kov, G. M. (2001). Numerical methods. Мoscow: Laboratory of Basic Knowledge, 630.

Downloads

Published

2017-02-28

How to Cite

Bezvesilna, O., Tkachuk, A., Chepyuk, L., Nechai, S., & Khylchenko, T. (2017). Introducing the principle of constructing an aviation gravimetric system with any type of gravimeter. Eastern-European Journal of Enterprise Technologies, 1(7 (85), 45–56. https://doi.org/10.15587/1729-4061.2017.92941

Issue

Section

Applied mechanics