Devising a method for maintaining manageability at multidimensional automated control of tethered underwater vehicle

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.93291

Keywords:

multi-dimensional automated control, method for maintaining manageability, remotely operated underwater vehicle

Abstract

Automated control of spatial motion of remotely operated underwater vehicle (ROV) is a known scientific problem since as an object of control it is essentially nonlinear. Operational control of ROV is a multi-dimensional problem. The synthesis of regulators separately for each degree of freedom is complicated by mutual influence of kinematic parameters of ROV. Nonlinearity of the "restrictions" type, typical for ROV, leads to the occurrence of "strong" and "weak" degrees of freedom. This degrades the quality of automated control system (SAC) as a whole.

We obtained a matrix notation of the basic law of dynamics of marine movable object as a solid body. Own and added masses and moments of inertia of the body and the fluid are brought into a separate matrix. This makes it possible to apply the resulting equation without structural changes to study the dynamics of spatial motion of ROV with different parameters. The equation is used in direct form to model the motion of ROV and in the inverse form for the synthesis of SAC over its spatial motion.

An inverse regulator (IR) of ROV with six degrees of freedom is synthesized based on the method of inverse dynamics and decomposition of the reference model. We simulated the work of inverse controller IR of ROV and demonstrated a loss of manageability by the weak rotating degrees of freedom. The fundamentals of the method for maintaining manageability with automated control of a multidimensional object are formulated. The essence of the method is in driving the contours of SAC out of the modes of saturation by scaling control errors.

We designed SAC of spatial motion of ROV based on the synthesized IR and the unit for maintaining manageability. It provides controlled motion of ROV by six degrees of freedom without losing manageability.

A simulation of the developed SAC of spatial motion of ROV is performed. The simulation results revealed that the unit for maintaining manageability provides for the operation of SAC on the verge of saturation of its contours. This enables the ROV motion by six degrees of freedom without losing manageability. 

Author Biography

Oleksandr Blintsov, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79000

PhD, Associate Professor

Department of Information Security

References

  1. Rowinski, L. (2008). Pojazdy glebinowe. Budowa i wyposazenie. Gdansk: Przedsiebiorstwo Prywatne “WiB”, 593.
  2. Slotine, J-J. E. (1983). Tracking control of nonlinear systems using sliding surface. Massachusetts, 129.
  3. Dudykevych, V., Blintsov, O. (2016). Tasks statement for modern automatic control theory of underwater complexes with flexible tethers. EUREKA: Physics and Engineering, 5, 25–36. doi: 10.21303/2461-4262.2016.00158
  4. Fossen, T. I. (2011). Handbook of marine craft hydrodynamics and motion control. Norway: John Wiley & Sons Ltd, 596. doi: 10.1002/9781119994138
  5. Bessa, W. M., Dutra, M. S., Kreuzer, E. (2013). Dynamic Positioning of Underwater Robotic Vehicles with Thruster Dynamics Compensation. International Journal of Advanced Robotic Systems, 10 (9), 325. doi: 10.5772/56601
  6. García-Valdovinos, L. G., Salgado-Jiménez, T., Bandala-Sánchez, M., Nava-Balanzar, L., Hernández-Alvarado, R., Cruz-Ledesma, J. A. (2014). Modelling, Design and Robust Control of a Remotely Operated Underwater Vehicle. International Journal of Advanced Robotic Systems, 11 (1), 1. doi: 10.5772/56810
  7. Miao, B., Li, T., Luo, W. (2013). A DSC and MLP based robust adaptive NN tracking control for underwater vehicle. Neurocomputing, 111, 184–189. doi: 10.1016/j.neucom.2012.12.026
  8. Sahu, B. K., Subudhi, B. (2014). Adaptive Tracking Control of an Autonomous Underwater Vehicle. International Journal of Automation and Computing, 11 (3), 299–307. doi: 10.1007/s11633-014-0792-7
  9. Pshihopov, V. H., Medvedev, M. Ju., Fedorenko, R. V., Gurenko, B. V., Chufistov, V. M., Shevchenko, V. A. (2014). Algoritmy mnogosvjaznogo pozicionno-traektornogo upravlenija podvizhnymi ob’ektami. Inzhenernyj vestnik Dona, 31 (4-1).
  10. Soylu, S., Proctor, A. A., Podhorodeski, R. P., Bradley, C., Buckham, B. J. (2016). Precise trajectory control for an inspection class ROV. Ocean Engineering, 111, 508–523. doi: 10.1016/j.oceaneng.2015.08.061
  11. Fernandes, D. de A., Sorensen, A. J., Pettersen, K. Y., Donha, D. C. (2015). Output feedback motion control system for observation class ROVs based on a high-gain state observer: Theoretical and experimental results. Control Engineering Practice, 39, 90–102. doi: 10.1016/j.conengprac.2014.12.005
  12. Chu, Z., Zhu, D., Jan, G. E. (2016). Observer-based adaptive neural network control for a class of remotely operated vehicles. Ocean Engineering, 127, 82–89. doi: 10.1016/j.oceaneng.2016.09.038
  13. Rua, S., Vasquez, R. E. (2016). Development of a Low-Level Control System for the ROV Visor3. International Journal of Navigation and Observation, 2016, 1–12. doi: 10.1155/2016/8029124
  14. Pantov, E. N., Mahin, N. N., Sheremetov, B. B. (1973). Osnovy teorii dvizhenija podvodnyh apparatov. Leningrad: Sudostroenie, 216.
  15. Lukomskij, Ju. A., Peshehonov, V. G., Skorohodov, D. A. (2002). Navigacija i upravlenie dvizheniem sudov. Sankt-Peterburg: "Jelmor", 360.
  16. Bronshtejn, I. N., Semendjaev, K. A. (1986). Spravochnik po matematike dlja inzhenerov i uchashhihsja vtuzov. Moscow: Nauka, Gl. red. Fiz.-mat. Lit., 544.
  17. Vagushhenko, L. L., Cymbal, N. N. (2007). Sistemy avtomaticheskogo upravlenija dvizheniem sudna. Odesa: Feniks, 328.
  18. Stern, F., Yang, J., Wang, Z., Sadat-Hosseini, H., Mousaviraad, M., Bhushan, S., Xing, T. (2013). Computational ship hydrodynamics: nowadays and way forward. International Shipbuilding Progress, 60 (1-4), 3–105.
  19. Vojtkunskij, Ja. I. (Ed.) (1985). Spravochnik po teorii korablja. Vol. 1. Leningrad: Sudostroenie, 768.
  20. Blincov, O. V. (2012). Matematychna model' dynamiky prostorovogo ruhu kabel'-trosa pryv’jaznoi' pidvodnoi' systemy. Zbirnyk naukovyh prac' NUK, 5-6, 61–63.
  21. Krut'ko, P. D. (2004). Obratnye zadachi dinamiki v teorii avtomaticheskogo upravlenija. Moscow: Mashinostroenie, 576.
  22. Blintsov, O. (2016). Formation of a reference model for the method of inverse dynamics in the tasks of control of underwater complexes. Eastern-European Journal of Enterprise Technologies, 4 (2 (82)), 42–50. doi: 10.15587/1729-4061.2016.74875

Downloads

Published

2017-02-21

How to Cite

Blintsov, O. (2017). Devising a method for maintaining manageability at multidimensional automated control of tethered underwater vehicle. Eastern-European Journal of Enterprise Technologies, 1(9 (85), 4–16. https://doi.org/10.15587/1729-4061.2017.93291

Issue

Section

Information and controlling system