Obtaining of Ni–Al layered double hydroxide by slit diaphragm electrolyzer

Authors

  • Vadym Kovalenko Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 Federal State Educational Institution of Higher Education "Vyatka State University" Moskovskaya str., 36, Kirov, Russian Federation, 610000, Ukraine https://orcid.org/0000-0002-8012-6732
  • Valerii Kotok Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 Federal State Educational Institution of Higher Education "Vyatka State University" Moskovskaya str., 36, Kirov, Russian Federation, 610000, Ukraine https://orcid.org/0000-0001-8879-7189

DOI:

https://doi.org/10.15587/1729-4061.2017.95699

Keywords:

Ni–Al layered double hydroxide, electrochemical synthesis, slit diaphragm electrolyzer

Abstract

Ni–Al layered double hydroxides are promising cathode materials for Ni–Cd, Ni–Fe and Ni–MeH accumulators with improved characteristics. However, they are prepared using batch methods which cannot guarantee the stability of their characteristics. The main aim of the present work was the development of a continuous method of electrochemical synthesis of highly active Ni–Al layered double hydroxide in a slit diaphragm electrolyzer (SDE). A study on the influence of current density and anolyte composition (NaOH or NaOH+Na2CO3 at different ratios) on the electrochemical properties of NI-Al hydroxide has been conducted. The LDH structure has been proven by means of X-ray diffraction analysis. It has been demonstrated that synthesis of Ni-Al LDH in SDE must be conducted at high current densities at which formation rate of hydroxyl anions would exceed the supply rate of cations. This would prevent the presence of aluminum cations in the solution that causes poisoning upon adsorption on the hydroxide surface. It has been demonstrated that introduction of sodium carbonate into the anolyte is not feasible, because of the possibility of complete hydrolysis of Al3+ in the presence of СО32– with the formation of the Al(OH)3 phase. This phase is capable of dissolving in alkaline electrolyte and poisoning the nickel hydroxide electrode. Optimal parameters for the synthesis of Ni–Al LDH in SDE have been established: current density – 18 A/dm2, anolyte – NaOH solution. Ni–Al LDH, synthesized in SDE at these conditions, demonstrated the specific capacity of 237 mA·h/g. This exceeds capacities of chemically synthesized Ni-Al LDH (211 mA·h/g) and industrial sample (185 mA·h/g).

Author Biographies

Vadym Kovalenko, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 Federal State Educational Institution of Higher Education "Vyatka State University" Moskovskaya str., 36, Kirov, Russian Federation, 610000

PhD, Associate Professor

Department of Analytical Chemistry and Food Additives and Cosmetics

Department of Technologies of Inorganic Substances and Electrochemical Manufacturing

Valerii Kotok, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 Federal State Educational Institution of Higher Education "Vyatka State University" Moskovskaya str., 36, Kirov, Russian Federation, 610000

PhD, Associate Professor

Department of Processes, Apparatus and General Chemical Technology

Department of Technologies of Inorganic Substances and Electrochemical Manufacturing

References

  1. Posada, J. O. G., Rennie, A. J. R., Villar, S. P., Martins, V. L., Marinaccio, J., Barnes, A. et. al. (2017). Aqueous batteries as grid scale energy storage solutions. Renewable and Sustainable Energy Reviews, 68, 1174–1182. doi: 10.1016/j.rser.2016.02.024
  2. Hall, D. S., Lockwood, D. J., Poirier, S., Bock, C., MacDougall, B. R. (2012). Raman and Infrared Spectroscopy of α and β Phases of Thin Nickel Hydroxide Films Electrochemically Formed on Nickel. The Journal of Physical Chemistry A, 116 (25), 6771–6784. doi: 10.1021/jp303546r
  3. Vidotti, M., Torresi, R., de Torresi, S. I. C. (2010). Eletrodos modificados por hidroxido de niquel: um estudo de revisao sobre suas propriedades estruturais e eletroquimicas visando suas aplicacoes em eletrocatalise, eletrocromismo e baterias secundarias. Quimica Nova, 33 (10), 2176–2186. doi: 10.1590/s0100-40422010001000030
  4. Kovalenko, V. L., Kotok, V. A., Sykchin, A. A., Mudryi, I. A., Ananchenko, B. A., Burkov, A. A. et. al. (2016). Nickel hydroxide obtained by high-temperature two-step synthesis as an effective material for supercapacitor applications. Journal of Solid State Electrochemistry, 21 (3), 683–691. doi: 10.1007/s10008-016-3405-2
  5. Кovalenko, V., Kotok, V., Bolotin, O. (2016). Definition of factors influencing on Ni(OH)2 electrochemical characteristics for supercapacitors. Eastern-European Journal of Enterprise Technologies, 5 (6 (83)), 17–22. doi: 10.15587/1729-4061.2016.79406
  6. Hu, M., Yang, Z., Lei, L., Sun, Y. (2011). Structural transformation and its effects on the electrochemical performances of a layered double hydroxide. Journal of Power Sources, 196 (3), 1569–1577. doi: 10.1016/j.jpowsour.2010.08.041
  7. Bao, J., Zhu, Y. J., Xu, Q. S., Zhuang, Y. H., Zhao, R. D., Zeng, Y. Y., Zhong, H. L. (2012). Structure and Electrochemical Performance of Cu and Al Codoped Nanometer α-Nickel Hydroxide. Advanced Materials Research, 479-481, 230–233. doi: 10.4028/www.scientific.net/amr.479-481.230
  8. Solovov, V., Kovalenko, V., Nikolenko, N., Kotok, V., Vlasova, E. (2017). Influence of temperature on the characteristics of Ni(II), Ti(IV) layered double hydroxides synthesised by different methods. Eastern-European Journal of Enterprise Technologies, 1 (6 (85)), 16–22. doi: 10.15587/1729-4061.2017.90873
  9. Zhou, F., Zhao, X., van Bommel, A., Rowe, A. W., Dahn, J. R. (2010). Coprecipitation Synthesis of NixMn1-x(OH)2Mixed Hydroxides. Chemistry of Materials, 22 (3), 1015–1021. doi: 10.1021/cm9018309
  10. Rocha, M. A., Winnischofer, H., Araki, K., Anaissi, F. J., Toma, H. E. (2011). A New Insight on the Preparation of Stabilized Alpha-Nickel Hydroxide Nanoparticles. Journal of Nanoscience and Nanotechnology, 11 (5), 3985–3996. doi: 10.1166/jnn.2011.3872
  11. Qi, J., Xu, P., Lv, Z., Liu, X., Wen, A. (2008). Effect of crystallinity on the electrochemical performance of nanometer Al-stabilized α-nickel hydroxide. Journal of Alloys and Compounds, 462 (1-2), 164–169. doi: 10.1016/j.jallcom.2007.07.102
  12. Li, Y. W., Yao, J. H., Liu, C. J., Zhao, W. M., Deng, W. X., Zhong, S. K. (2010). Effect of interlayer anions on the electrochemical performance of Al-substituted α-type nickel hydroxide electrodes. International Journal of Hydrogen Energy, 35 (6), 2539–2545. doi: 10.1016/j.ijhydene.2010.01.015
  13. Hu, B., Chen, S.-F., Liu, S.-J., Wu, Q.-S., Yao, W.-T., Yu, S.-H. (2008). Controllable Synthesis of Zinc-Substituted α- and β-Nickel Hydroxide Nanostructures and Their Collective Intrinsic Properties. Chemistry – A European Journal, 14 (29), 8928–8938. doi: 10.1002/chem.200800458
  14. Gong, L., Liu, X., Su, L. (2011). Facile Solvothermal Synthesis Ni(OH)2 Nanostructure for Electrochemical Capacitors. Journal of Inorganic and Organometallic Polymers and Materials, 21 (4), 866–870. doi: 10.1007/s10904-011-9519-1
  15. Yang, L.-X., Zhu, Y.-J., Tong, H., Liang, Z.-H., Li, L., Zhang, L. (2007). Hydrothermal synthesis of nickel hydroxide nanostructures in mixed solvents of water and alcohol. Journal of Solid State Chemistry, 180 (7), 2095–2101. doi: /10.1016/j.jssc.2007.05.009
  16. Xu, L., Ding, Y.-S., Chen, C.-H., Zhao, L., Rimkus, C., Joesten, R., Suib, S. L. (2008). 3D Flowerlike α-Nickel Hydroxide with Enhanced Electrochemical Activity Synthesized by Microwave-Assisted Hydrothermal Method. Chemistry of Materials, 20 (1), 308–316. doi: 10.1021/cm702207w
  17. Fomanyuk, S. S., Krasnov, Y. S., Kolbasov, G. Y. (2013). Kinetics of electrochromic process in thin films of cathodically deposited nickel hydroxide. Journal of Solid State Electrochemistry, 17 (10), 2643–2649. doi: 10.1007/s10008-013-2169-1
  18. Кovalenko, V. L., Kotok, V. A., Malishev, V. V. (2008). Electrochemical obtaining of Ni(OH)2 from sulphate solution by flowing slit diafragm electrolyzer. RSE-SEE, 1st regional symposium on electrochemistry of South-East Europe. Rovinj, Croatia, 201–203.
  19. Kovalenko, V. L., Kotok, V. A. (2015). The synthesis of nickel hydroxide by electrolysis from nickel nitrate solution in the slit diaphragm electrolyzer. Electrochemical properties. Collection of research papers of National mining university, 49, 181–186.
  20. Kotok, V. A., Koshel, N. D., Kovalenko, V. L., Grechanuk, A. A. (2008). The stability of aluminium-substituted alpha-nickel hydroxide. First Regional Symposium on Electrochemistry of South-East Europe “RSE-SEE”. Croatia Rovinj, 204–206.
  21. Kotok, V., Kovalenko, V. (2017). Optimization of nickel hydroxide electrode of the hybrid supercapacitor. Eastern-European Journal of Enterprise Technologies, 1 (6 (85)), 4–9. doi: 10.15587/1729-4061.2017.90810

Downloads

Published

2017-04-25

How to Cite

Kovalenko, V., & Kotok, V. (2017). Obtaining of Ni–Al layered double hydroxide by slit diaphragm electrolyzer. Eastern-European Journal of Enterprise Technologies, 2(6 (86), 11–17. https://doi.org/10.15587/1729-4061.2017.95699

Issue

Section

Technology organic and inorganic substances