The study of inhibiting structural material corrosion in water recycling systems by sodium hydroxide

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.95989

Keywords:

circulating water, corrosion, carbon steel, grey cast iron, mineralization, sodium hydroxide

Abstract

Influence of sodium hydroxide on the rate and nature of corrosion of St3 carbon steel and SCh 18–36 grey cast iron in highly mineralized recycling water was studied. The nature of the corrosion damage was determined and the weight index of corrosion of these alloys was calculated. By means of polarization measurements, the electrochemical indices of anodic processes on steel and cast iron were determined. The effect of the circulating water pH on behavior of steel and cast iron under anodic polarization has been studied by cyclic voltammetry. It has been shown that the effective impact of pH on characteristics of the anode processes occured at pH≥11.4. At these pH values, the metal steady-state potential shifted to a region of positive values which was an indication of inhibition of the anodic process itself. At pH≥11.4, the pitting potential significantly shifted to the positive side: the process of healing pits was faster than their formation. It has been established that steel and especially cast iron tend to pass into a passive state at pH>10. The corrosion rate values did not exceed this index for the studied alloys in distilled water and were in the range of acceptable values. Thus, it is possible to effectively inhibit the rate of steel and cast iron corrosion, especially in the waterline zone by shifting the pH of the circulating water to the alkaline region. As a result of the conducted studies, optimal working conditions for iron alloys as the most technically important structural materials for designing closed cycles of circulating water supply systems have been established.

Author Biographies

Alexei Pilipenko, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD

Department of technical electrochemistry

Hanna Pancheva, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Assistant

Department of labor and environment protection

Anna Reznichenko, National University of civil protection of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

PhD

Department of occupational, technogenic and environmental safety 

Oksana Myrgorod, National University of Civil Protection of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

PhD, Associate Professor

Department of Fire prevention in settlements 

Nataliya Miroshnichenko, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Associate professor

Chair of integrated technologies, processes and devices

Alexander Sincheskul, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD

Department of chemical technology of inorganic substances, catalysis and ecology

References

  1. Stalinskij, D. V., Jepshtejn, S. I., Muzykina, Z. S. (2012). Eeffektivnye sistemy vodosnabzhenija, ochistki promyshlennyh i hozjajstvenno-bytovyh stokov. Jekologija i promyshlennost', 4, 4–9.
  2. Bolotova, Ju. V., Ruchkinova, O. I. (2015). Korrozija teploobmennogo oborudovanija neftehimicheskih proizvodstv. Vestnik PNIPU. Serija: Mashinostroenie, materialovedenie, 17 (4), 102–119.
  3. Gavrilov, N. B. (2008). Reagentnaja obrabotka oborotnoj ohlazhdajushhej vody. Himicheskaja tehnologija, 9 (7), 340–344.
  4. Chichenin, V. V., Kishnevskij, V. A., Gricaenko, A. S., Savich, S. L., Shulyak, I. D. (2015). Study of corrosion rate and deposit accumulation under circulating water concentration in industrial applications. Eastern-European Journal of Enterprise Technologies, 6 (8 (78)), 34–40. doi: 10.15587/1729-4061.2015.54752
  5. Nesterenko, S. V., Kachanov, V. A., Grigorov, V. I., Kancedal, L. D. (2008). Ingibirovanie i baktericidnaja obrabotka podpitochnoj vody dlja zamedlenija korrozii v sisteme oborotnogo cikla pri ispol'zovanii fenol'nyh stochnyh vod koksohimicheskih proizvodstv. Vestnik NTU «KhPI». Ser.: Himija i himicheskaja tehnologija, 16, 88–92.
  6. Safin, D. H., Hasanova, D. I. (2010). Osobennosti primenenija fosfatnoj tehnologii ingibirovanija sistem vodooborota na OAO «Nizhnekamsneftehim». Korrozija: materialy i zashhita, 7, 7–12.
  7. Ushakov, G. V., Solodov, G. A., Mochal'nikov, S. V. (2007). Razrabotka ingibitora otlozhenija solej zhestkosti i korrozii v vodnyh sredah na osnove organicheskogo fosfonata dlja sistem oborotnogo vodosnabzhenija predprijatij himicheskoj i koksohimicheskoj promyshlennosti. Izvestija Tomskogo politehnicheskogo universiteta, 310 (1), 144–148.
  8. Chirkunov, A. A., Kuznecov, Yu. I., Kazanskij, L. P. (2007). Formirovanie zashhitnyh sloev na nizkouglerodistoj stali ingibitorom korrozii na osnove anavidina. Korrozija, materialy, zashhita, 9, 27–32.
  9. Tamazashvili, A. T., Mazna, M. I., Sirenko, L. V. (2012). Comparison of the efficiency of phosphate inhibitors of steel corrosion in tap water. Eastern-European Journal of Enterprise Technologies, 2 (13 (56)), 28–31. Available at: http://journals.uran.ua/eejet/article/view/3943/3611
  10. Hasanovа, D. I., Safin, D. H. (2014). Analiz prichin biootlozhenij v sistemah oborotnogo vodosnabzhenija neftehimicheskih proizvodstv. Jekologija i promyshlennost' Rossii, 4, 48–52.
  11. Cervova, J., Hagarova, M., Lackova, P. (2014). Corrosive protection of metal materials in cooling water. American Journal of Materials Science and Application, 2 (1), 6–10.
  12. Xu, P., Xu, Z., Wang, J., Zhang, Y., Liu, T. (2012). Microbiological Induced Corrosion on Brass in Recycling Cooling Water System Makeup by Reclaimed Water. Materials Sciences and Applications, 03 (04), 253–258. doi: 10.4236/msa.2012.34037
  13. Flemming, H.-C. (2009). Why Microorganisms Live in Biofilms and the Problem of Biofouling. Springer Series on Biofilms. Berlin Heidelberg: Springer-Verlag, 3–11. doi: 10.1007/978-3-540-69796-1_1
  14. Schweitzer, P. A. (2009). Fundamentals of corrosion: mechanisms, causes and preventative methods. New York: CRC Press, 416. doi: 10.1201/9781420067712
  15. Cicek, V. (2014). Corrosion Engineering. John Wiley & Sons, 288. doi: 10.1002/9781118720837
  16. Saha, J. K. (2013). Corrosion of Constructional Steels in Marine and Industrial Environment. Frontier Work in Atmospheric Corrosion. Springer India, 189. doi: 10.1007/978-81-322-0720-7

Downloads

Published

2017-04-12

How to Cite

Pilipenko, A., Pancheva, H., Reznichenko, A., Myrgorod, O., Miroshnichenko, N., & Sincheskul, A. (2017). The study of inhibiting structural material corrosion in water recycling systems by sodium hydroxide. Eastern-European Journal of Enterprise Technologies, 2(1 (86), 21–28. https://doi.org/10.15587/1729-4061.2017.95989

Issue

Section

Engineering technological systems