Numerical modeling of physical fields in the process of drying of paper for corrugating by the infrared radiation

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.96741

Keywords:

paper for corrugating, fluting, infrared radiation, moisture content, duration of drying, mathematical model

Abstract

By using a numerical model, developed based on the proposed physical and mathematical models, we performed a numerical study of non-stationary temperature fields and moisture content of the process of infrared radiation drying of fluting. A distinctive feature of present study is a combined consideration of the kinetics of drying process, translucency to the IR radiation of the material using the approximations of the Burgers' models, "gray" medium and diffuse reflection of boundaries. Verification of the numerical model demonstrated a convergence of results of numerical modeling of the fluting surface temperature, duration and speed of its drying with the data of physical experiment within the range of 5 % on the interval of change in the square meter mass of dry fluting from 0.112 kg/m2 to 0.2 kg/m2. It is substantiated that the developed numerical model makes it possible to define kinetic patterns and basic parameters required to intensify the process of drying and to design the appropriate equipment.

Author Biographies

Anton Karvatskii, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute» Peremohy ave., 37, Kyiv, Ukraine, 03056

Doctor of Technical Sciences, Professor

Department of chemical, polymer and silica engineering

Viсtor Marchevsky, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute» Peremohy ave., 37, Kyiv, Ukraine, 03056

PhD, Professor

Department of Machines and Apparatus of Chemical and Oil Refinery Productions

Oleh Novokhat, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute» Peremohy ave., 37, Kyiv, Ukraine, 03056

PhD, Senior Lecturer

Department of Machines and Apparatus of Chemical and Oil Refinery Productions

References

  1. Kolchyna, Y. A. (2013). Rynok kartona v Ukrayne (sostoyanye y problemу). Upakovka, 2, 22–26.
  2. Lu, T., Shen, S. Q. (2007). Numerical and experimental investigation of paper drying: Heat and mass transfer with phase change in porous media. Applied Thermal Engineering, 27 (8-9), 1248–1258. doi: 10.1016/j.applthermaleng.2006.11.005
  3. Marchevskiy, V. M., Novohat, O. A. (2011). Infrachervone nagrivannya i sushinnya paperu y kartonu. Himichna inzheneriya, ekologiya ta resursozberezhennya, 2 (8), 42–44.
  4. Lykov, A. V. (1968). Teoriya sushki. Moscow: Energiya, 472.
  5. Ghodbanan, S., Alizadeh, R., Shafiei, S. (2015). Steady-State Modeling of Multi-Cylinder Dryers in a Corrugating Paper Machine. Drying Technology, 33 (12), 1474–1490. doi: 10.1080/07373937.2015.1020161
  6. Heo, C. H., Cho, H., Yeo, Y.-K. (2011). Dynamic modeling of paper drying processes. Korean Journal of Chemical Engineering, 28 (8), 1651–1657. doi: 10.1007/s11814-011-0046-0
  7. Ottosson, A., Nilsson, L., Berghel, J. (2016). A mathematical model of heat and mass transfer in Yankee drying of tissue. Drying Technology, 35 (3), 323–334. doi: 10.1080/07373937.2016.1170697
  8. Weineisen, H., Stenstrom, S. (2008). Modeling Drying and Energy Performance of Industrial Through-Dryers. Drying Technology, 26 (6), 776–785. doi: 10.1080/07373930802046443
  9. Dhib, R. (2007). Infrared Drying: From Process Modeling to Advanced Process Control. Drying Technology, 25 (1), 97–105. doi: 10.1080/07373930601160908
  10. Khansary, M. A., Joogh, F. K. Q., Hosseini, A., Safari, J., Allahyari, E., Zadeh, N. S., Sani, A. H. (2014). Modeling drying of a coated paper. International Journal of Modeling, Simulation, and Scientific Computing, 05 (01), 1350019. doi: 10.1142/s1793962313500190
  11. Kocabiyik, H., Tezer, D. (2009). Drying of carrot slices using infrared radiation. International Journal of Food Science & Technology, 44 (5), 953–959. doi: 10.1111/j.1365-2621.2008.01767.x
  12. Doymaz, I. (2011). Infrared drying of sweet potato (Ipomoea batatas L.) slices. Journal of Food Science and Technology, 49 (6), 760–766. doi: 10.1007/s13197-010-0217-8
  13. Doymaz, I. (2012). Drying of pomegranate seeds using infrared radiation. Food Science and Biotechnology, 21 (5), 1269–1275. doi: 10.1007/s10068-012-0167-1
  14. Marchevsky, V. (2015). Kinetics of Corrugated Board Flute Drying with the Use of Infrared Radiation. The Advanced Science Journal, 2015 (6), 69–72. doi: 10.15550/asj.2015.06.069
  15. Kolesnikov, A. V., Deshko, V. I., Lokhmanets, Yu. V., Karvatskii, A. Ya., Kirichenko, I. K. (2010). The complex heat exchange model at growing of large alkali halide crystals. Functional Materials, 17 (4), 483–487.
  16. Zigel', R., Hauell, Dzh.; Hrustalev, B. A. (Ed.) (1975). Teploobmen izlucheniem. Moscow: Mir, 934.
  17. Deshko, V. Y., Karvatskyy, A. Ya., Lokhmanets, Yu. V., Hulenko, A. O. (2011). Modelyrovanye nestatsyonarnoho protsessa vytyahyvanyya krystallov yz rasplava. Matematychne modelyuvannya, 2 (25), 75–79.
  18. Sergeev, O. A., Men, A. A. (1977). Teplofizicheskie svoystva poluprozrachnyih materialov. Moscow: Izd-vo standartov, 288.
  19. Ocisik, M. N.; Anfimov, N. A. (Ed.) (1976). Slozhnyj teploobmen. Moscow: Mir, 616.
  20. Seyed-Yagoobi, J., Noboa, H. (2004). Heating/drying of uncoated paper with gas-fired and electric infrared emitters – fundamental understanding. Drying 2004 – Proceedings of the 14th International Drying Symposium (IDS 2004). Sao Paulo.
  21. Marchevskiy, V. M., Novohat, O. A., Voronin, L. G., Tatarchuk, O. O. (2015). Sushinnya sanitarno-gigienichnogo paperu z vikoristannyam infrachervonogo viprominyuvannya. Himichna inzheneriya, ekologiya ta resursozberezhennya, 1 (14), 29–31.
  22. Marchevsky, V., Novokhat, O., Tsepkalo, O. (2015). Paper drying process for corrugation (fluting) using radiant energy. Ukrainian Journal of Food Science, 2, 310–321.
  23. Deshko, V. I., Karvatskii, A. Ya., Lenkin, A. V., Lokhmanets, Yu. V. (2008). Control of radiation-conductive heat exchange at crystal growth from melt. Functional Materials, 15 (2), 229–234.
  24. Mathcad. Engineering math software that allows perform, analyze, and share your most vital calculations. Available at: http://www.ptc.com/engineering-math-software/mathcad/
  25. Karvatskyi, A. Ya., Pedchenko, A. Yu. (2016). Rozv’iazannia neliniinykh nestatsionarnykh zadach teploprovidnosti z vykorystanniam CAD-system. Matematychne ta komp’iuterne modeliuvannia. Seria: Fizyko-matematychni nauky, 13, 67–77.

Downloads

Published

2017-04-26

How to Cite

Karvatskii, A., Marchevsky, V., & Novokhat, O. (2017). Numerical modeling of physical fields in the process of drying of paper for corrugating by the infrared radiation. Eastern-European Journal of Enterprise Technologies, 2(5 (86), 14–22. https://doi.org/10.15587/1729-4061.2017.96741

Issue

Section

Applied physics