Effect of oxidation and nitriding on the properties of zirconium alloys

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.97446

Keywords:

zirconium alloys, interstitial elements, near-surface layer, hardness, mass increment, shell of a heat generating element

Abstract

In contrast to a large number of publications about the influence of interstitial elements (O, N) on the physical-mechanical properties of zirconium alloys, insufficient attention at present is paid to examining their influence on the characteristics of near-surface layers of the shells of heat generating element (HGE). Therefore, it is expedient to widen the knowledge about the influence of interstitial elements on the properties of zirconium HGE tubes. Authors experimentally established the influence of treatment in the controlled oxygen- and nitrogen-containing gas media on the mass increment and properties of the near-surface layer of samples-rings, cut out of the shells of heat generating elements. Differences in the saturation of internal and external surfaces of zirconium pipes were described. It was shown that roughness of the internal surface is less compared to that of the external surface. Results of examining the hardness of external and internal surfaces of the samples-rings after oxidizing and nitriding are presented here. For example, treatment of the samples-rings in the oxygen-containing medium (T=650 °C, t=20 h) leads to the formation of hardness at the external surface HV0.49=1190±90, and at the internal surface HV0.49=1190±90. However, after treatment in the nitrogen-containing medium (T=650 °C, t=20 h), the hardness on external surface is HV0.49=615±35, while on the internal surface it is HV0.49 =445±35.

For example, after treatment in the oxygen-containing medium (T=650 °C, t=20 h), depth of the strengthened layer at the external surface is l=70…75 μm and at the internal surface, it reaches l=60…65 μm. Treatment in the nitrogen-containing medium (T=650 °С, t=20 h) causes the formation of a strengthened layer on the external surface l=60…65 µm and on the internal surface – l=55…65 µm.

The duration of isothermal holding in the oxygen mixture, which can lead to the crack initiation at the internal surface of zirconium HGE pipes, was experimentally discovered. Results of present work may be taken into account for the development of modes of treatment of zirconium alloys. 

Author Biography

Vasyl Trush, Karpenko Physico-Mechanical Institute of the National Academy of Sciences of Ukraine Naukova str., 5, Lviv, Ukraine, 79060

PhD

Department of High temperature strength of structural materials in gas and liquid metal media

References

  1. Kalin, B. A., Platonov, P. A., Chernov, I. I., Shtrombah, Ya. I. (2008). Fizicheskoe materialovedenie. Konstrukcionnye materialy yadernoj tekhniki. Vol. 6. Moscow: MIFI, 672.
  2. Motta, A. T., Couet, A., Comstock, R. J. (2015). Corrosion of Zirconium Alloys Used for Nuclear Fuel Cladding. Annual Review of Materials Research, 45 (1), 311–343. doi: 10.1146/annurev-matsci-070214-020951
  3. Azarenkov, N. A., Bulavin, L. A., Zalyubovskij, I. I., Kirichenko, V. G., Neklyudov, I. M., Shilyaev, B. A. (2012). Yadernaya ehnergetika. Yadernaya ehnergetika. Kharkiv: HNU imeni V. N. Karazina, 535.
  4. Banerjee, S., Banerjee, M. K. (2016). Nuclear Applications: Zirconium Alloys. Reference Module in Materials Science and Materials Engineering. doi: 10.1016/b978-0-12-803581-8.02576-5
  5. Chernyaeva, T. P., Stukalov, A. I., Gricina, V. M. (1999). Kislorod v cirkonii: Obzor po materialam otechestvennoj i zarubezhnoj pechati za 1955–1999 gg. Kharkiv, 111.
  6. Chernyaeva, T. P., Stukalov, A. I., Gricina, V. M. (2002). Vliyanie kisloroda na mekhanicheskie svojstva cirkoniya. Voprosy atomnoj nauki i tekhniki. Seriya: Vakuum, chistye materialy, sverhprovodniki, 1, 96–102.
  7. Kirichenko, V. G. (2015). YAderno-fizicheskoe metallovedenie splavov atomnoj ehnergetike. Kharkiv: HNU imeni V. N. Karazina, 481.
  8. Chernyaeva, T. P., Ostapov, A. V. (2013). Vodorod v cirkonii. Voprosy atomnoj nauki i tekhniki. Seriya: Fizika radiacionnyh povrezhdenij i radiacionnoe materialovedenie, 5, 16–32.
  9. Frost, B. R. T. (Ed.) (1994). Materials Science and Technology: A Comprehensive Treatment. Vol. 10B. Wiley-VCH, 455.
  10. Chernyaeva, T. P., Stukalov, A. I., Gricina, V. M. (2000). Povedenie kisloroda v cirkonii. Voprosy atomnoj nauki i tekhniki. Seriya: Fizika radiacionnyh povrezhdenij i radiacionnoe materialovedenie, 2 (77), 71–85.
  11. Steinbruck, M., Bottcher, M. (2011). Air oxidation of Zircaloy-4, M5® and ZIRLO™ cladding alloys at high temperatures. Journal of Nuclear Materials, 414 (2), 276–285. doi: 10.1016/j.jnucmat.2011.04.012
  12. Allen, T. R., Konings, R. J. M., Motta, A. T. (2012). Corrosion of Zirconium Alloys. Comprehensive Nuclear Materials, 49–68. doi: 10.1016/b978-0-08-056033-5.00063-x
  13. Kurpaska, L., Jozwik, I., Jagielski, J. (2016). Study of sub-oxide phases at the metal-oxide interface in oxidized pure zirconium and Zr-1.0 % Nb alloy by using SEM/FIB/EBSD and EDS techniques. Journal of Nuclear Materials, 476, 56–62. doi: 10.1016/j.jnucmat.2016.04.038
  14. Coindreau, O., Duriez, C., Ederli, S. (2010). Air oxidation of Zircaloy-4 in the 600–1000 °C temperature range: Modeling for ASTEC code application. Journal of Nuclear Materials, 405 (3), 207–215. doi: 10.1016/j.jnucmat.2010.07.038
  15. Arima, T., Moriyama, K., Gaja, N., Furuya, H., Idemitsu, K., Inagaki, Y. (1998). Oxidation kinetics of Zircaloy-2 between 450 °C and 600 °C in oxidizing atmosphere. Journal of Nuclear Materials, 257 (1), 67–77. doi: 10.1016/s0022-3115(98)00069-5
  16. Ritchie, I. G., Atrens, A. (1977). The diffusion of oxygen in alpha-zirconium. Journal of Nuclear Materials, 67 (3), 254–264. doi: 10.1016/0022-3115(77)90097-6
  17. Hood, G. M., Zou, H., Herbert, S., Schultz, R. J., Nakajima, H., Jackman, J. A. (1994). Oxygen diffusion in α-Zr single crystals. Journal of Nuclear Materials, 210 (1-2), 1–5. doi: 10.1016/0022-3115(94)90215-1
  18. Ishchenko, N. I. (2014). Opredelenie koehfficienta diffuzii kisloroda v okside na cirkonievyh splavah i v prilegayushchem metalle po dannym izmerenij korrozionnogo privesa i tolshchiny oksidnogo sloya. Voprosy atomnoj nauki i tekhniki. Seriya: Materialy na teplovyh i bystryh nejtronah, 4 (92), 88–92.
  19. Duglas, D. (1975). Metallovedenie cirkoniya. Moscow: «Atomizdat», 360.
  20. Duriez, C., Guilbert, S., Stern, A., Grandjean, C., Belovsky, L., Desquines, J. et. al. (2011). Characterization of Oxygen Distribution in LOCA Situations. Journal of ASTM International, 8 (2), 103156. doi: 10.1520/jai103156
  21. Shmakov, A., Kalin, B., Smirnov, E. (2014). Vodorod v splavah cirkoniya. Gidridnoe ohrupchivanie i razrusheniya cirkonievyh materialov. LAP LAMBERG Academic Publishing ist ein der. Deutschland, 196.
  22. Koteneva, M. V. (2014). Struktura i razrushenie oksidnyh plenok cirkonievyh splavov. Moscow, 24.
  23. Benara, Zh. (Ed.) (1969). Okislenie metallov. Vol. II. Moscow: Izd-vo «Metallurgiya», 444.
  24. Zhang, J., Oganov, A. R., Li, X., Dong, H., Zeng, Q. (2015). Novel compounds in the Zr-O system, their crystal structures and mechanical properties. Phys. Chem. Chem. Phys., 17 (26), 17301–17310. doi: 10.1039/c5cp02252e
  25. Ivasishin, O. M., Voevodin, V. N., Dekhtyar, A. I., Markovskij, P. E., Pilipenko, N. N., Lavrinenko, S. D., Gontareva, R. G. (2015). Osobennosti mekhanicheskogo povedenie trubok tvehlov iz splava Zr-1 % Nb v usloviyah immitacii avarijnogo otklyucheniya ohlazhdeniya. Voprosy atomnoj nauki i tekhniki. Seriya: Materialy na teplovyh i bystryh nejtronah, 5 (99), 53–60.
  26. Steinbruck, M. (2014). High-temperature reaction of oxygen-stabilized α-Zr(O) with nitrogen. Journal of Nuclear Materials, 447 (1-3), 46–55. doi: 10.1016/j.jnucmat.2013.12.024
  27. Borodin, O. V., Bryk, V. V., Vasilenko, R. L., Voevodin, V. N., Petel'guzov, I. A., Rybal'chenko, N. D. (2008). Vliyanie soderzhanie kisloroda na ehvolyuciyu mikrostruktury splava Zr1 % Nb pri ionnom soderzhanii. Voprosy atomnoj nauki i tekhniki. Seriya: Fizika radiacionnyh povrezhdenij i radiacionnoe materialovedenie, 2 (92), 53–61.
  28. Puls, M. P. (2012). The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components. Springer-Verlag London, 475. doi: 10.1007/978-1-4471-4195-2
  29. Birchley, J., Fernandez-Moguel, L. (2012). Simulation of air oxidation during a reactor accident sequence: Part 1 – Phenomenology and model development. Annals of Nuclear Energy, 40 (1), 163–170. doi: 10.1016/j.anucene.2011.10.019
  30. Blahova, O., Medlin, R., Riha, J. (2009). Evaluation of microstructure and local mechanical properties of zirconium alloys. 18th International Metallurgical & Materials Conference Proceedings Metal, 19–21.
  31. Ishchenko, N. I., Petel'guzov, I. A., Slabospickaya, E. A., Vasilenko, R. L. (2005). Vliyanie vysokotemperaturnogo otzhiga v vodyanom pare na strukturu obolochek iz splava cirkoniya s 1 % Nb. Voprosy atomnoj nauki i tekhniki. Seriya: Fizika radiacionnyh povrezhdenij i radiacionnoe materialovedenie, 5 (88), 115–120.
  32. Yegorova, L., Lioutov, K., Jouravkova, N., Konobeev, A., Smirnov, V., Chesano, V., Goryachev, A. (2005). Experimental Study of Embrittlement of Zr-l % Nb VVER Cladding under LOCA-Relevant Conditions. U.S. Nuclear Regulatory Commission Washington, 475.
  33. Nikulin, S. A., Rozhnov, A. B., Gusev, A. Y., Nechaykina, T. A., Rogachev, S. O., Zadorozhnyy, M. Y. (2014). Fracture resistance of Zr–Nb alloys under low-cycle fatigue tests. Journal of Nuclear Materials, 446 (1-3), 10–14. doi: 10.1016/j.jnucmat.2013.11.039
  34. Jun, Z., Zhongkui, L., Jianjun, Z., Feng, T. (2012). Effect of Hydrogen Content on Low-Cycle Fatigue Behavior of Zr-Sn-Nb Alloy. Rare Metal Materials and Engineering, 41 (9), 1531–1534. doi: 10.1016/s1875-5372(13)60006-5
  35. Vahrusheva, V. S., Kolenkova, O. A., Suhomlin, G. D. (2005). Vliyanie soderzhaniya kisloroda na plastichnost', povrezhdaemost' i parametry akusticheskoj ehmmisii metalla trub iz splava Zr-1 % Nb. Voprosy atomnoj nauki i tekhniki. Seriya: Fizika radiacionnyh povrezhdenij i radiacionnoe materialovedenie, 5, 104–109.
  36. Girsova, S. L. (2009). Vliyanie kisloroda na dislokacionnye prevrashcheniya v GPU-splavov cirkoniya. X Mezhdunarodnaya nauchno-tekhnicheskaya Ural'skaya shkola-seminar metallovedov-molodyh uchenyh. Ekaterinburg, 26–28.
  37. Azhazha, V. M., Borts, B. V., Butenko, I. M. et. al. (2006). Vyrobnytstvo partiyi trubnykh zahotovok treks-trub ta vyhotovlennya doslidno-promyslovoyi partiyi tvel'nykh trub zi splavu Zr-1Nb iz vitchyznyanoyi syrovyny. Nauka ta innovatsiyi, 2 (4), 64–76.

Downloads

Published

2017-04-26

How to Cite

Trush, V. (2017). Effect of oxidation and nitriding on the properties of zirconium alloys. Eastern-European Journal of Enterprise Technologies, 2(11 (86), 34–42. https://doi.org/10.15587/1729-4061.2017.97446

Issue

Section

Materials Science