DOI: https://doi.org/10.15587/1729-4061.2017.97855

Research into the influence OF AL2O3 nanoparticle admixtures on the magnitude of isopropanol molar volume

Vitaly Zhelezny, Taras Lozovsky, Vladimir Gotsulskiy, Nikolai Lukianov, Igor Motovoy

Abstract


The results obtained in experimental study of density of solutions of isopropyl alcohol and Al2O3 nanoparticles are given. Studies on nanofluid density were carried out using pycnometric method in a temperature range from 250 K to 315 K at weight concentrations of nanoparticles 0.92 %, 1.81 %, 4.01 % and 6.65 %. The obtained data made it possible to reveal temperature and concentration dependences of the studied nanofluids and calculate magnitude of the excess molar volume as well as hydrodynamic diameter of nanoparticles. The data on the value of hydrodynamic diameter obtained from the information on excess molar volume were in good agreement with the data measured by the method of dynamic light scattering. It was shown that the equivalent diameter of the adsorption layer of isopropanol molecules on nanoparticles decreases with an increase in concentration of Al2O3 nanoparticles. Based on these studies, a new method for predicting molar volume of nanofluids was proposed. This technique takes into account presence of a sorbed layer of base fluid molecules on the nanoparticle surface. As the studies show, density of the sorption phase is higher than density of isopropyl alcohol at the set-up parameters. Presence of a sorption layer of isopropyl alcohol molecules on the nanoparticle surface determines magnitude of the excess molar volume. This fact has to be taken into account when simulating density of nanofluids.

A simple method was also proposed for determining equivalent diameter of the adsorbed layer of base fluid molecules on the nanoparticle surface. The essence of the method is an assumption that nanoparticles have a shape close to spherical and the surface layer is a spherical layer of sorbed isopropanol molecules on the nanoparticle.

This method allows determination of the equivalent diameter from easily measured data. It is recommended for use in modeling viscosity, thermal conductivity and heat capacity of nanofluids. It is also recommended for use in development of heat exchange models for power equipment.


Keywords


nanofluid; density of nanoisopropanol; molar concentration; hydrodynamic radius; prediction technique; three-phase model

Full Text:

PDF

References


Lukianov, N. N., Khliyeva, O. Ya., Zhelezny, V. P., Semenyuk, Yu. V. (2015). Nanorefrigerants application possibilities study to increase the equipment ecological-energy efficiency. Eastern-European Journal of Enterprise Technologies, 3 (5 (75)), 32–40. doi: 10.15587/1729-4061.2015.42565

Moroz, S. A., Khliyeva, O. Ya., Lukianov, N. N., Zhelezny, V. P. (2016). The influence of the compressor oil viscosity and fullerenes C60 additives in the oil on the energy efficiency of refrigeration compressor system. Journal International Academy of Refrigeration, 15 (1), 41–46. doi: 10.21047/1606-4313-2016-15-1-41-46

Angayarkanni, S. A., Philip, J. (2015). Review on thermal properties of nanofluids: Recent developments. Advances in Colloid and Interface Science, 225, 146–176. doi: 10.1016/j.cis.2015.08.014

Murshed, S. M. S., Leong, K. C., Yang, C. (2008). Thermophysical and electrokinetic properties of nanofluids – A critical review. Applied Thermal Engineering, 28 (17-18), 2109–2125. doi: 10.1016/j.applthermaleng.2008.01.005

Adamenko, I., Bulavin, L., Korolovych, V., Moroz, K., Prylutskyy, Y. (2009). Thermophysical properties of carbon nanotubes in toluene under high pressure. Journal of Molecular Liquids, 150 (1-3), 1–3. doi: 10.1016/j.molliq.2009.07.008

Kedzierski, M. A. (2012). Viscosity and density of CuO nanolubricant. International Journal of Refrigeration, 35 (7), 1997–2002. doi: 10.1016/j.ijrefrig.2012.06.012

Sommers, A. D., Yerkes, K. L. (2009). Experimental investigation into the convective heat transfer and system-level effects of Al2O3-propanol nanofluid. Journal of Nanoparticle Research, 12 (3), 1003–1014. doi: 10.1007/s11051-009-9657-3

Kedzierski, M. A. (2013). Viscosity and density of aluminum oxide nanolubricant. International Journal of Refrigeration, 36 (4), 1333–1340. doi: 10.1016/j.ijrefrig.2013.02.017

Vajjha, R. S., Das, D. K., Mahagaonkar, B. M. (2009). Density Measurement of Different Nanofluids and Their Comparison With Theory. Petroleum Science and Technology, 27 (6), 612–624. doi: 10.1080/10916460701857714

Vasu, V., Rama Krishna, K., Kumar, A. C. S. (2007). Analytical prediction of forced convective heat transfer of fluids embedded with nanostructured materials (nanofluids). Pramana, 69 (3), 411–421. doi: 10.1007/s12043-007-0142-1

Lemmon, E. W., Huber, M. L., McLinden, M. O. (2013). NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties. REFPROP, Version 9.1. National Institute of Standards and Technology, Standard Reference Data Program. Gaithersburg.

Anthony, J. W., Bideaux, R. A., Bladh, K. W., Nichols, M. C. (1997). Handbook of Mineralogy. III (Halides, Hydroxides, Oxides). Chantilly, VA, US: Mineralogical Society of America, 628.

Stephan, P., Kabelac, S., Kind, M., Martin, H., Mewes, D., Schaber, K. (Eds.) (2010). VDI Heat Atlas. Berlin: Springer – Verlag, 1584.

Frenkel, Ya. I. (1945). Kineticheskaya teoriya zhidkostey. Мoscow-Leningrad: Izd-vo AN SSSR, 424.

Yiamsawasd, T., S. Dalkilic, A., Wongwises, S. (2012). Measurement of Specific Heat of Nanofluids. Current Nanoscience, 8 (6), 939–944. doi: 10.2174/157341312803989132

Brar, S. K., Verma, M. (2011). Measurement of nanoparticles by light-scattering techniques. TrAC Trends in Analytical Chemistry, 30 (1), 4–17. doi: 10.1016/j.trac.2010.08.008

Xue, Q., Xu, W.-M. (2005). A model of thermal conductivity of nanofluids with interfacial shells. Materials Chemistry and Physics, 90 (2-3), 298–301. doi: 10.1016/j.matchemphys.2004.05.029


GOST Style Citations


Lukianov, N. N. Nanorefrigerants application possibilities study to increase the equipment ecological-energy efficiency [Text] / N. N. Lukianov, O. Ya. Khliyeva, V. P. Zhelezny, Yu. V. Semenyuk // Eastern-European Journal of Enterprise Technologies. – 2015. – Vol. 3, Issue 5 (75). – P. 32–40. doi: 10.15587/1729-4061.2015.42565 

Moroz, S. A. The influence of the compressor oil viscosity and fullerenes C60 additives in the oil on the energy efficiency of refrigeration compressor system [Text] / S. A. Moroz, O. Ya. Khliyeva, N. N. Lukianov, V. P. Zhelezny // Journal International Academy of Refrigeration. – 2016. – Vol. 15, Issue 1. – P. 41–46. doi: 10.21047/1606-4313-2016-15-1-41-46 

Angayarkanni, S. A. Review on thermal properties of nanofluids: Recent developments [Text] / S. A. Angayarkanni, J. Philip // Advances in Colloid and Interface Science. – 2015. – Vol. 225. – P. 146–176. doi: 10.1016/j.cis.2015.08.014 

Murshed, S. M. S. Thermophysical and electrokinetic properties of nanofluids – A critical review [Text] / S. M. S. Murshed, K. C. Leong, C. Yang // Applied Thermal Engineering. – 2008. – Vol. 28, Issue 17-18. – P. 2109–2125. doi: 10.1016/j.applthermaleng.2008.01.005 

Adamenko, I. Thermophysical properties of carbon nanotubes in toluene under high pressure [Text] / I. Adamenko, L. Bulavin, V. Korolovych, K. Moroz, Y. Prylutskyy // Journal of Molecular Liquids. – 2009. – Vol. 150, Issue 1-3. – P. 1–3. doi: 10.1016/j.molliq.2009.07.008 

Kedzierski, M. A. Viscosity and density of CuO nanolubricant [Text] / M. A. Kedzierski // International Journal of Refrigeration. – 2012. – Vol. 35, Issue 7. – P. 1997–2002. doi: 10.1016/j.ijrefrig.2012.06.012 

Sommers, A. D. Experimental investigation into the convective heat transfer and system-level effects of Al2O3-propanol nanofluid [Text] / A. D. Sommers, K. L. Yerkes // Journal of Nanoparticle Research. – 2009. – Vol. 12, Issue 3. – P. 1003–1014. doi: 10.1007/s11051-009-9657-3 

Kedzierski, M. A. Viscosity and density of aluminum oxide nanolubricant [Text] / M. A. Kedzierski // International Journal of Refrigeration. – 2013. – Vol. 36, Issue 4. – P. 1333–1340. doi: 10.1016/j.ijrefrig.2013.02.017 

Vajjha, R. S. Density Measurement of Different Nanofluids and Their Comparison With Theory [Text] / R. S. Vajjha, D. K. Das, B. M. Mahagaonkar // Petroleum Science and Technology. – 2009. – Vol. 27, Issue 6. – P. 612–624. doi: 10.1080/10916460701857714 

Vasu, V. Analytical prediction of forced convective heat transfer of fluids embedded with nanostructured materials (nanofluids) [Text] / V. Vasu, K. Rama Krishna, A. C. S. Kumar // Pramana. – 2007. – Vol. 69, Issue 3. – P. 411–421. doi: 10.1007/s12043-007-0142-1 

Lemmon, E. W. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties [Text] / E. W. Lemmon, M. L. Huber, M. O. McLinden // REFPROP, Version 9.1. National Institute of Standards and Technology, Standard Reference Data Program. – Gaithersburg, 2013.

Anthony, J. W. Handbook of Mineralogy. III (Halides, Hydroxides, Oxides) [Text] / J. W. Anthony, R. A. Bideaux, K. W. Bladh, M. C. Nichols. – Chantilly, VA, US: Mineralogical Society of America, 1997. – 628 p.

VDI Heat Atlas [Text] / P. Stephan, S. Kabelac, M. Kind, H. Martin, D. Mewes, K. Schaber (Eds.). – 2-nd ed. – Berlin: Springer – Verlag, 2010. – 1584 p.

Frenkel, Ya. I. Kineticheskaya teoriya zhidkostey [Text] / Ya. I. Frenkel. – Мoscow-Leningrad: Izd-vo AN SSSR, 1945. – 424 p.

Yiamsawasd, T. Measurement of Specific Heat of Nanofluids [Text] / T. Yiamsawasd, A. S. Dalkilic, S. Wongwises // Current Nanoscience. – 2012. – Vol. 8, Issue 6. – P. 939–944. doi: 10.2174/157341312803989132 

Brar, S. K. Measurement of nanoparticles by light-scattering techniques [Text] / S. K. Brar, M. Verma // TrAC Trends in Analytical Chemistry. – 2011. – Vol. 30, Issue 1. – P. 4–17. doi: 10.1016/j.trac.2010.08.008 

Xue, Q. A model of thermal conductivity of nanofluids with interfacial shells [Text] / Q. Xue, W.-M. Xu // Materials Chemistry and Physics. – 2005. – Vol. 90, Issue 2-3. – P. 298–301. doi: 10.1016/j.matchemphys.2004.05.029 







Copyright (c) 2017 Vitaly Zhelezny, Taras Lozovsky, Vladimir Gotsulskiy, Nikolai Lukianov, Igor Motovoy

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061