Вплив Q&P-обробки на мікроструктуру та механічні властивості низьковуглецевої TRIP-assisted сталі

Автор(и)

  • Р.О. Кусса ДВНЗ «Приазовський державний технічний університет», м. Маріуполь, Ukraine

DOI:

https://doi.org/10.31498/2225-6733.42.2021.240569

Ключові слова:

TRIP-ефект, Q&P-обробка, ферит, мартенсит, аустеніт, міцність, пластичність, ударна в’язкість

Анотація

В статті розглянуто вплив термічної обробки за технологією «Quenching-and-Partitioning» (Q&P) на фазово-структурний стан та механічні властивості низьколегованої TRIP-assisted сталі 20С2Г2Б. Встановлено, що Q&P-обробка із аустенітизацією у межкритичному інтервалі (МКІ) температур із гартувальним охолодженням до 200°С і наступною витримкою при 350-400°С впродовж 5-20 хв істотно підвищує пластичність в порівнянні зі стандартною термічною обробкою низьковуглецевих TRIP-assisted сталей. Q&P-термообробка з аустенітизацією в однофазному інтервалі температур із гартувальним охолодженням до 235°С і наступною витримкою при 350-400°С впродовж 5-20 хв забезпечує зростання показників міцності та ударної в’язкості сталі. Найбільш високий комплекс механічних властивостей (PSE » 20 ГПа %) забезпечується МКІ/Q&P обробкою з витримкою при 400°С впродовж 5 хв та 20 хв. Поліпшення механічних властивостей пов’язується із формуванням багатофазної мікроструктури, яка містить підвищену кількість залишкового аустеніту, та зі здатністю аустеніту до прояву TRIP-ефекту

Біографія автора

Р.О. Кусса , ДВНЗ «Приазовський державний технічний університет», м. Маріуполь

Аспірант

Посилання

Перелік використаних джерел (ДСТУ):

Lesch C. Advanced high strength steels (AHSS) for automotive applications − tailored prop-erties by smart microstructural adjustments / C. Lesch, N. Kwiaton, F.B. Klose // Steel Re-search International. – 2017. – № 88 (10). – P. 1700210. – Mode of access: https://doi.org/10.1002/srin.201700210.

Современные конструкционные стали с TRIP-эффектом / В.И. Зурнаджи [и др.] // Наука и прогресс транспорта. Вестник Днепропетровского национального университета же-лезнодорожного транспорта. – 2020. – № 5 (89). – С. 80-92. – Mode of access: https://doi.org/10.15802/stp2020.

Bhadeshia H.K.D.H. TRIP-assisted steels? / H.K.D.H. Bhadeshia // ISIJ international. – 2002. – № 42 (9). – Pp. 1059-1060.

Mechanical properties of carbide-free lower bainite in complex-alloyed constructional steel: Effect of bainitizing treatment parameters / V.I. Zurnadzhy [etc.] // Kovove Mater. – 2020. – № 58. – Pp. 129-140. – Mode of access: https://doi.org/10.4149/km_2020_2_129.

Three-body abrasive wear behaviour of metastable spheroidal carbide cast irons with differ-ent chromium contents / V. Efremenko [etc.] // International Journal of Materials Research. – 2018. – № 109 (2). – Pp. 147-156. – Mode of access: https://doi.org/10.3139/146.111583.

Bainit in Stählen mit hohem Widerstand gegen Abrasivverschleiß (Bainite in Steels with High Resistance to Abrsive Wear) / O. Hesse [etc.] // Tribologie und Schmierungstechnik. – 2016. – № 63 (2). – Рp. 5-13.

Chabak Yu.G. Change of Secondary-Carbides’ Nanostate in 14.5% Cr Cast Iron at High-Temperature Heating / Yu.G. Chabak, V.G. Efremenko // Metallofizika i Noveishie Tekhnologii. – 2012. – № 34. – Р. 1205-1220.

Malinov L.S. Influence of isothermal quenching modes on the wear resistance of high-strength cast iron / L.S. Malinov, D.V. Burova, V.D. Gomanyuk, D.S. Semenkov // Journal of Friction and Wear. – 2020. – № 41. – Рp. 129-133. – Mode of access: https://doi.org/10.3103/

S1068366620020087.

Cheiliakh O.P. Implementation of physical effects in the operation of smart materials to form their properties / O.P. Cheiliakh, Ya.O. Cheiliakh // Progress in Physics of Metals. – 2020. – Vol. 21. – №. 3. – Pp. 363-463. – Mode of access: https://doi.org/10.15407/ufm.21.03.363.

Malinov L.S. Impact of metastable austenite on the wear resistance of tool steel / L.S. Mali-nov, V.L. Malinov, D.V. Burova // Journal of Friction and Wear. – 2018. – № 39 (4). – Рp. 349-353. – Mode of access: https://doi.org/10.3103/S1068366618040098.

Matsumura O. Trip and its kinetic aspects in austempered 0.4 C-1.5 Si-0.8 Mn steel / O. Matsumura, Y. Sakuma, H. Takechi // Scripta Metallurgica. – 1987. – № 21 (10). – Рp. 1301-1306.

Bleck W. The TRIP effect and its application in cold formable sheet steels / W. Bleck, X. Guo, Y. Ma // Steel Research International. – 2017. – № 88 (10). – Рp. 1-10. – Mode of ac-cess: https://doi.org/10.1002/srin.201700218.

Austenite Transformation Behavior and Mechanical Properties of Constructional V, Nb-Alloyed TRIP-Assisted Steel / R. Kussa [etc.] // Key Engineering Materials. – 2020. – № 864. – Рp. 241-249. – Mode of access: https://doi.org/10.4028/www.scientific.net/KEM.864.241.

Speer J.G. Carbon partitioning into austenite after martensite transformation / J.G. Speer, D.K. Matlock, B.C. De Cooman, J.G. Schroth // Acta Materialia. – 2003. – № 51 (9). –Рp. 2611-2622.

Speer J.G. Partitioning of carbon from supersaturated plates of ferrite, with application to steel processing and fundamentals of the bainite transformation / J.G. Speer, D.V. Edmonds, F.C. Rizzo, D.K. Matlock // Current Opinion in Solid State and Materials Science. – 2004. – № 8 (3-4). – Рp. 219-237.

Correlation of isothermal bainite transformation and austenite stability in quenching and par-titioning steels / S. Chen [etc.] // Journal of Iron and Steel Research International. – 2017. – № 24 (11). – Рp. 1095-1103. – Mode of access: https://doi.org/10.1016/S1006-706X(17)30159-0.

Bhadeshia H.K.D.H. Bainite in steels: theory and practice / H.K.D.H. Bhadeshia. – CRC Press, 2015. – 616 p.

Microstructure evolution and mechanical behavior of a novel hot-galvanized Q&P steel sub-jected to high-temperature short-time overaging treatment / Y. Wang [etc.] // Materials Sci-ence and Engineering: A. – 2020. – № 789. – Рp. 139665. – Mode of access: https://doi.org/10.1016/j.msea.2020.139665.

Effects of stress relief tempering on microstructure and tensile/impact behavior of quenched and partitioned commercial spring steel / V.I. Zurnadzhy [etc.] // Materials Science and Engi-neering: A. – 2019. – № 745. – Рp. 307-318. – Mode of access: https://doi.org/10.1016/j.msea.2018.12.106.

Tailoring strength/ductility combination in 2.5 wt% Si-alloyed middle carbon steel produced by the two-step QP treatment with a prolonged partitioning stage / V.I. Zurnadzhy [etc.] // Materials Science and Engineering: A. – 2020. – № 791. – Рp. 139721. – Mode of access: https://doi.org/10.1016/j.msea.2020.139721.

High strength-elongation product of Nb-microalloyed low-carbon steel by a novel quench-ing–partitioning-tempering process / S. Zhou [etc.] // Materials Science and Engineering: A. – 2011. – № 528. – Рp. 8006-8012. – Mode of access: https://doi.org/10.1016/j.msea.2011.07.008.

Золотаревский В.С. Механические свойства металлов / В.С. Золоторевский. – М. : МИСИС, 1998. – 400 с.

Bhargava M. Forming limit diagram of Advanced High Strength Steels (AHSS) based on strain-path diagram / M. Bhargava, A. Tewari, S.K. Mishra // Materials & Design. – 2015. – № 85. –

Рp. 149-155. – Mode of access: https://doi.org/10.1016/j.matdes.2015.06.147.

References:

Lesch C., Kwiaton N., Klose F.B. Advanced high strength steels (AHSS) for automotive ap-plications − tailored properties by smart microstructural adjustments. Steel Research Interna-tional, 2017, no. 88 (10), pp. 1700210. doi: 10.1002/srin.201700210.

Zurnadzhy V.I., Voloshin V.S., Kussa R.A., Efremenko V.G., Dzherenova A.V., Tsvetkova O.V. Sovremennye konstrukcionnye stali s TRIP-jeffektom [Modern structural steels with TRIP-effect]. Nauka i progress transporta. Vestnik Dnepropetrovskogo nacional’nogo uni-versiteta zheleznodorozhnogo transporta – Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport, 2020, no. 5 (89), pp. 80-92. doi: 10.15802/stp2020.

Bhadeshia H.K.D.H. TRIP-assisted steels? ISIJ international, 2002, no. 42 (9), pp. 1059-1060.

Zurnadzhy V.I., Efremenko V.G., Petryshynets I., Shimizu K., Brykov M.N., Kushchenko I.V., Kudin V.V. Mechanical properties of carbide-free lower bainite in complex-alloyed constructional steel: Effect of bainitizing treatment parameters. Kovove Mater, 2020, no. 58, pp. 129-140. doi: 10.4149/km_2020_2_129.

Efremenko V., Shimizu K., Pastukhova T., Chabak Yu., Brykov M., Kusumoto K., Efremenko A. Three-body abrasive wear behaviour of metastable spheroidal carbide cast irons with different chromium contents. International Journal of Materials Research, 2018, no. 109 (2), pp. 147-156. doi: 10.3139/146.111583.

Hesse O., Liefeith J., Kunert M., Kapustyan A., Brykov M.N., Efremenko V.G. Bainit in stählen mit hohem Widerstand gegen abrasivverschleiss (Bainite in steels with high resistance to abrsive wear). Tribologie und Schmierungstechnik, 2016, no. 63 (2), pp. 5-13.

Chabak Yu.G., Efremenko V.G. Change of secondary-carbides’ nanostate in 14.5% Cr cast iron at high-temperature heating. Metallofizika i Noveishie Tekhnologii, 2012, no. 34, pp. 1205-1220.

Malinov L.S., Burova D.V., Gomanyuk V.D., Semenkov D.S. Influence of isothermal quenching modes on the wear resistance of high-strength cast iron. Journal of Friction and Wear, 2020, no. 41, pp. 129-133. doi: 10.3103/S1068366620020087.

Cheiliakh O.P., Cheiliakh Ya.O. Implementation of physical effects in the operation of smart materials to form their properties. Progress in Physics of Metals, 2020, vol. 21, no. 3, pp. 363-463. doi: 10.15407/ufm.21.03.363.

Malinov L.S., Malinov V.L., Burova D.V. Impact of metastable austenite on the wear re-sistance of tool steel. Journal of Friction and Wear, 2018, no. 39 (4), pp. 349-353. doi: 10.3103/S1068366618040098.

Matsumura O., Sakuma Y., Takechi H. Trip and its kinetic aspects in austempered 0.4 C-1.5 Si-0.8 Mn steel. Scripta Metallurgica, 1987, no. 21 (10), pp. 1301-1306.

Bleck W., Guo X., Ma Y. The TRIP effect and its application in cold formable sheet steels. Steel Research International, 2017, no. 88 (10), pp. 1-10. doi: 10.1002/srin.201700218.

Kussa R., Kushchenko I., Andilakhai V., Petryshynets I., Efremenko V., Zurnadzhy V. Aus-tenite transformation behavior and mechanical properties of constructional V, Nb-alloyed TRIP-assisted steel. Key Engineering Materials, 2020, no. 864, pp. 241-249. doi: 10.4028/www.scientific.net/KEM.864.241.

Speer J.G., Matlock D.K., De Cooman B.C., Schroth J.G. Carbon partitioning into austenite after martensite transformation. Acta Materialia, 2003, no. 51 (9), pp. 2611-2622.

Speer J.G., Edmonds D.V., Rizzo F.C., Matlock D.K. Partitioning of carbon from supersatu-rated plates of ferrite, with application to steel processing and fundamentals of the bainite transformation. Current Opinion in Solid State and Materials Science, 2004, no. 8 (3-4), pp. 219-237.

Chen S., Wang G.Z., Liu C., Wang C.C., Zhao X.M., Xu W. Correlation of isothermal bainite transformation and austenite stability in quenching and partitioning steels. Journal of Iron and Steel Research International, 2017, no. 24 (11), pp. 1095-1103. doi: 10.1016/S1006-706X(17)30159-0.

Bhadeshia H.K.D.H. Bainite in steels: theory and practice. CRC Press, 2015. 616 p.

Wang Y., Xu Y., Liu R., Peng F., Gu X., Zhang T., Hou X., Sun, W. Microstructure evolu-tion and mechanical behavior of a novel hot-galvanized Q&P steel subjected to high-temperature short-time overaging treatment. Materials Science and Engineering: A, 2020, no. 789, pp. 139665.doi: 10.1016/j.msea.2020.139665.

Zurnadzhy V.I., Efremenko V.G., Wu K.M., Azarkhov A.Y., Chabak Y.G., Greshta V.L., Isayev O.B., Pomazkov M.V. Effects of stress relief tempering on microstructure and ten-sile/impact behavior of quenched and partitioned commercial spring steel. Materials Science and Engineering: A, 2019, no. 745, pp. 307-318. doi: 10.1016/j.msea.2018.12.106.

Zurnadzhy V.I., Efremenko V.G., Wu K.M., Petryshynets I., Shimizu K., Zusin A.M., Bry-kov M.N., Andilakhai V.A. Tailoring strength/ductility combination in 2.5 wt% Si-alloyed middle carbon steel produced by the two-step QP treatment with a prolonged partitioning stage. Materials Science and Engineering: A, 2020, no. 791, pp. 139721. doi: 10.1016/j.msea.2020.139721.

Zhou S., Zhang K., Wang Y., Gu J.F., Rong Y.H. High strength-elongation product of Nb-microalloyed low-carbon steel by a novel quenching-partitioning-tempering process. Materi-als Science and Engineering: A, 2011, no. 528, pp. 8006-8012. doi: 10.1016/j.msea.2011.07.008.

Zolotarevskij V.S. Mehanicheskie svojstva metallov [Mechanical properties of metals]. Mos-cow: MISIS Publ., 1998. 400 p.

Bhargava M., Tewari A., Mishra S.K. Forming limit diagram of advanced high strength steels (AHSS) based on strain-path diagram. Materials & Design, 2015, no. 85, pp. 149-155. doi: 10.1016/j.matdes.2015.06.147.

##submission.downloads##

Опубліковано

2021-05-27

Номер

Розділ

132 Матеріалознавство