Marcin Kamiński

Lodz University of Technology, Poland
Department of Structural Mechanics

Scopus profile: link
Researcher ID: A-5757-2008
GoogleScholar profile:
link
ID ORCID: http://orcid.org/0000-0002-8180-6991

Selected Publications:

  1. Kamiński, M., Bredow, R. (2024). On application of the relative entropy concept in reliability assessment of some engineering cable structures. Computers & Structures, 305, 107560. https://doi.org/10.1016/j.compstruc.2024.107560 

  2. Kamiński, M. (2024). Probabilistic entropy and relative entropy for the effective characteristics of the fiber-reinforced composites with stochastic interface defects. Computer Methods in Applied Mechanics and Engineering, 432, 117308. https://doi.org/10.1016/j.cma.2024.117308 

  3. Iqbal, S., Kamiński, M. (2024). Review Study on Mechanical Properties of Cellular Materials. Materials, 17 (11), 2682. https://doi.org/10.3390/ma17112682 

  4. Kamiński, M., Guminiak, M., Lenartowicz, A., Łasecka-Plura, M., Przychodzki, M., Sumelka, W. (2023). Stochastic nonlinear eigenvibrations of thin elastic plates resting on time-fractional viscoelastic supports. Probabilistic Engineering Mechanics, 74, 103522. https://doi.org/10.1016/j.probengmech.2023.103522 

  5. Kamiński, M. (2023). Uncertainty propagation, entropy, and relative entropy in the homogenization of some particulate composites. International Journal for Numerical Methods in Engineering, 124 (17), 3834–3851. https://doi.org/10.1002/nme.7259 

  6. Kamiński, M., Corigliano, A. (2022). Shannon Entropy in Stochastic Analysis of Some Mems. Energies, 15(15), 5483. doi: https://doi.org/10.3390/en15155483

  7. Guminiak, M., Kamiński, M. (2022). Stability of rectangular Kirchhoff plates using the Stochastic Boundary Element Methods. Engineering Analysis with Boundary Elements, 144, 441–455. doi: https://doi.org/10.1016/j.enganabound.2022.08.036

  8. Bredow, R., Kamiński, M. (2022). Structural Safety of the Steel Hall under Dynamic Excitation Using the Relative Probabilistic Entropy Concept. Materials, 15 (10), 3587. doi: https://doi.org/10.3390/ma15103587 

  9. Kamiński, M., Błoński, R. (2022). Analytical and Numerical Reliability Analysis of Certain Pratt Steel Truss. Applied Sciences, 12 (6), 2901. doi: https://doi.org/10.3390/app12062901 

  10. Sokołowski, D., Kamiński, M. (2020). Probabilistic homogenization of hyper-elastic particulate composites with random interface. Composite Structures, 241, 112118. doi:  http://doi.org/10.1016/j.compstruct.2020.112118

  11. Sokołowski, D., Kamiński, M., Wirowski, A. (2020). Energy Fluctuations in the Homogenized Hyper-Elastic Particulate Composites with Stochastic Interface Defects. Energies, 13 (8), 2011. doi: http://doi.org/10.3390/en13082011 

  12. Szafran, J., Juszczyk, K., Kamiński, M. (2020). Reliability Assessment of Steel Lattice Tower Subjected to Random Wind Load by the Stochastic Finite-Element Method. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 6 (1), 04020003. doi: http://doi.org/10.1061/ajrua6.0001040 

  13. Kamiński, M., Strąkowski, M. (2020). Computer Simulation of Stochastic Energy Fluctuations in Tensile Test of Elasto-Plastic Porous Metallic Material. Energies, 13 (2), 485. doi: http://doi.org/10.3390/en13020485 

  14. Sokołowski, D., Kamiński, M. (2019). Hysteretic Behavior of Random Particulate Composites by the Stochastic Finite Element Method. Materials, 12 (18), 2909. doi: http://doi.org/10.3390/ma12182909 

  15. Pokusiński, B., Kamiński, M. (2019). Lattice domes reliability by the perturbation-based approaches vs. semi-analytical method. Computers & Structures, 221, 179–192. doi: http://doi.org/10.1016/j.compstruc.2019.05.012 

  16. Strąkowski, M., Kamiński, M. (2019). Stochastic Finite Element Method Elasto-Plastic Analysis of the Necking Bar With Material Microdefects. ASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg, 5 (3). doi: http://doi.org/10.1115/1.4043401 

  17. Kamiński, M., Lauke, B. (2018). Probabilistic and stochastic aspects of rubber hyperelasticity. Meccanica, 53 (9), 2363–2378. doi: http://doi.org/10.1007/s11012-018-0821-7 

  18. Sokolowski, D., Kaminski, M. (2018). Homogenization of carbon/polymer composites with anisotropic distribution of particles and stochastic interface defects. Acta Mechanica. doi: http://doi.org/10.1007/s00707-018-2174-7 

  19. Kamiński, M. (2018). Deterministic and probabilistic homogenization limits for particulate composites with nearly incompressible components. Composite Structures, 187, 36–47. doi: http://doi.org/10.1016/j.compstruct.2017.12.030 

  20. Kamiński, M. (2017). Tsallis entropy in dual homogenization of random composites using the stochastic finite element method. International Journal for Numerical Methods in Engineering, 113 (5), 834–857. doi: http://doi.org/10.1002/nme.5638 

  21. Sokołowski, D., Kamiński, M. (2018). Probabilistic homogenization of random composite with ellipsoidal particle reinforcement by the iterative stochastic finite element method. doi: http://doi.org/10.1063/1.5019030 

  22. Sokołowski, D., Kamiński, M. (2018). Computational homogenization of carbon/polymer composites with stochastic interface defects. Composite Structures, 183, 434–449. doi: http://doi.org/10.1016/j.compstruct.2017.04.076 

  23. Szafran, J., Juszczyk, K., Kamiński, M. (2017). Coupled Finite Volume and Finite Element Method Analysis of a Complex Large-Span Roof Structure. International Journal of Applied Mechanics and Engineering, 22 (4), 995–1017. doi: http://doi.org/10.1515/ijame-2017-0064