Investigation of physical and chemical properties and structure of tripolyphosphate coatings on zinc plated steel

Authors

  • Olena Vlasova National Metallurgical Academy of Ukraine Gagarina ave., 8, Dnipro, Ukraine, 49005, Ukraine https://orcid.org/0000-0002-6814-409X
  • Vadym Kovalenko Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 Vyatka State University Moskovskaya str., 36, Kirov, Russian Federation, 610000, Ukraine https://orcid.org/0000-0002-8012-6732
  • Valerii Kotok Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 Vyatka State University Moskovskaya str., 36, Kirov, Russian Federation, 610000, Ukraine https://orcid.org/0000-0001-8879-7189
  • Sergey Vlasov National Mining University V. Yavornitsky ave., 19, Dnipro, Ukraine, 49600 Vyatka State University Moskovskaya str., 36, Kirov, Russian Federation, 610000, Ukraine https://orcid.org/0000-0002-5537-6342
  • Anna Cheremysinova Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005, Ukraine https://orcid.org/0000-0002-7877-1257

DOI:

https://doi.org/10.15587/1729-4061.2017.103151

Keywords:

composition, coat structure, zinc-plated steel, protective properties, sodium tripolyphosphate, aqueous solution

Abstract

The results of complex studies on the influence of the concentration of aqueous sodium tripolyphosphate solution on the physicochemical properties and structure of the coats on zinc-plated steel are presented. The coats were chemically deposited from 2–14 % aqueous sodium tripolyphosphate (STPP) solutions, heated to 70 ºС. It has been established that increasing concentration of aqueous STPP solution leads to an increase of the specific mass and crystallinity of the coats and decrease of protective properties. Metallographic studies have shown that the amorphous structure of the coats deposited from 2 % aqueous STPP solution changes to a structure with large sizes of crystallites for the coats prepared from aqueous STPP solutions with higher concentrations. The results of the X-ray diffraction (XRD) analysis have revealed that the coats with low protective properties, in addition to anhydrous zinc phosphates, also contain hydrated species. By means of raster electron microscopy, it has been established that the coats with the lowest protective properties, prepared from 12–14 % aqueous STPP solutions, are formed as thick, spongy layers with the presence of microcracks. Such structure leads to the accumulation and containment of moisture, which promotes corrosion under atmospheric conditions. 

Author Biographies

Olena Vlasova, National Metallurgical Academy of Ukraine Gagarina ave., 8, Dnipro, Ukraine, 49005

PhD, Associate Professor

Department of coating, composite materials and metal protection from corrosion

Vadym Kovalenko, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 Vyatka State University Moskovskaya str., 36, Kirov, Russian Federation, 610000

PhD, Associate Professor

Department of Analytical Chemistry and Food Additives and Cosmetics

Department of Technologies of Inorganic Substances and Electrochemical Manufacturing

Valerii Kotok, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 Vyatka State University Moskovskaya str., 36, Kirov, Russian Federation, 610000

PhD, Associate Professor

Department of Processes, Apparatus and General Chemical Technology

Department of Technologies of Inorganic Substances and Electrochemical Manufacturing

Sergey Vlasov, National Mining University V. Yavornitsky ave., 19, Dnipro, Ukraine, 49600 Vyatka State University Moskovskaya str., 36, Kirov, Russian Federation, 610000

Doctor of Technical Sciences, Professor

Department of underground mining

Department of building manufacture

Anna Cheremysinova, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005

PhD, Associate Professor

Department of Processes, Apparatus and General Chemical Technology

References

  1. Sankara Narayanan, T. S. N. (2005). Surfuce pretreament by phosphate conversion coatings. Rev. Adv. Mater. Sci., 9, 130–177.
  2. Grigoryan, N. S., Akimova, E. F., Vagramyan, T. A. (2008). Fosfatirovanie. Moscow: Globus, 144.
  3. Vagramyan, T. A., Grigoryan, N. S., Mazurova, D. V. et. al. (2011). Fosfatirovanie. Sovremennoe sostoyanie i perspektivy razvitiya v Rossii. Korroziya: materialy, zashchita, 2, 22–27.
  4. Kropacheva, O. I., Devyatkina, T. S., Skornyakova, N. A., Sanina, S. I. (2003). Poluchenie fosfatnyh pokrytiy na ocinkovannoy stali i issledovanie ih svoystv. Moscow: Globus, 367.
  5. Zayed, M. A., El-Dien, F. A. N., Hassan, A. I. (2009). Effect of Chemical Composition of Zinc Phosphating Solution on Phosphate Coating Properties. Egypt. J. Chem., 52 (5), 12–17.
  6. Abrashov, A. A., Grigoryan, N. S., Vagramyan, T. A., Akimova, E. F. (2010). Sovershenstvovanie rastvorov kristallicheskogo fosfatirovaniya. Gal'vanika i obrabotka poverhnosti, 18 (3), 48–52.
  7. Abrashov, A. A., Grigoryan, N. S., Rozanova, D. I. et. al. (2011). O vozmozhnosti zameny processov hromatirovaniya na processy fosfatirovaniya ocinkovannoy poverhnosti. Korroziya: materialy, zashchita, 11, 44–49.
  8. Arthanareeswari, M., Sankara Narayanan, T. S. N., Kamaraj, P., Tamilselvi, М. (2010). Influence of galvanic coupling on the formation of zinc phosphate coating. Indian J. Chem. TechnoL., 17 (3), 167–175.
  9. Vlasova, E., Kovalenko, V., Kotok, V., Vlasov, S. (2016). Research of the mechanism of formation and properties of tripolyphosphate coating on the steel basis. Eastern-European Journal of Enterprise Technologies, 5 (5 (83)), 33–39. doi: 10.15587/1729-4061.2016.79559
  10. Vlasova, E., Kovalenko, V., Kotok, V., Vlasov, S., Sknar, I., Cheremysinova, A. (2017). Investigation of composition and structure of tripolyphosphate coating on low carbon steel. Eastern-European Journal of Enterprise Technologies, 2 (6 (86)), 4–10. doi: 10.15587/1729-4061.2017.96572
  11. Abdalla, K., Rahmat, A., Azizan, A. (2012). The Effect of pH on Zinc Phosphate Coating Morphology and its Corrosion Resistance on Mild Steel. Advanced Materials Research, 626, 569–574. doi: 10.4028/www.scientific.net/amr.626.569
  12. Tumbaleva, Y., Ivanova, D., Fachikov, L. (2011). Effect of the P2 O5:NO3 – retio on the zink phosphate coating formation. Journal of the University of Chemical Technology and Metallurgy, 46 (4), 357–362.
  13. Kuznecov, Yu. I. (2001). Ingibitory korrozii v konversionnyh pokrytiyah IIΙ. Zashchita metallov ot korrozii, 37 (2), 119–125.
  14. Nanesenie konversionnyh pokrytiy. Masterskaya Svoego Dela. Available at: http://msd.com.ua/lakokrasochnye-pokrytiya/nanesenie-konversionnyx-pokrytij-2/
  15. Deya, M., Di Sarli, A. R., del Amo, B., Romagnoli, R. (2008). Performance of Anticorrosive Coatings Containing Tripolyphosphates in Aggressive Environments. Industrial & Engineering Chemistry Research, 47 (18), 7038–7047. doi: 10.1021/ie071544d
  16. Deya, M., Vetere, V. F., Romagnoli, R., del Amo, B. (2001). Aluminium tripolyphosphate pigments for anticorrosive paints. Pigment & Resin Technology, 30 (1), 13–24. doi: 10.1108/03699420110364129
  17. Vetere, V. F., Deya, M. C., Romagnoli, R., Amo, B. (2001). Calcium tripolyphosphate: An anticorrosive pigment for paint. Journal of Coatings Technology, 73 (6), 57–63. doi: 10.1007/bf02698398
  18. Yang, Y. F., Scantlebury, J. D., Koroleva, E., Ogawa, O., Tanabe, H. (2010). A Novel Anti-corrosion Calcium Magnesium Polyphosphate Pigment and Its Performance in Aqueous Solutions on Mild Steel. ECS Transactions, 24 (1), 77–85. doi: 10.1149/1.3453608
  19. Yang, Y. F., Scantlebury, J. D., Koroleva, E., Ogawa, O., Tanabe, H. (2010). A Novel Anti-corrosion Calcium Magnesium Polyphosphate Pigment and Its Performance in Aqueous Solutions on Mild Steel when Coupled to Metallic Zinc. ECS Transactions, 24 (1), 163–183. doi: 10.1149/1.3453615
  20. Burlov, V. V., Al'cybeeva, A. I., Kuzikova, T. M. (2011). Lokal'naya korroziya oborudovaniya sovremennogo neftepererabatyvayushchego zavoda. Izvestiya Sankt – Peterburgskogo gosudarstvennogo tekhnologicheskogo universiteta (tekhnicheskogo universiteta), 11 (37), 92–96.
  21. Fahim, I., Kheireddine, A., Belaaouad, S. (2013). Sodium tripolyphosphate (STPP) as a novel corrosion inhibitor for mild steel in 1M HCl. Journal of optoelectronics and advanced materials, 15 (5-6), 451–456.
  22. Vlasova, E. V., Kovalenko, V. L., Kotok, V. A. (2015). Izuchenie prirody tripolifosfata zheleza i sostava tripolifosfatnogo pokrytiya gravimetricheskim metodom s promyvkoy. Zbirnyk naukovykh prats' NHU, 46, 136–144.
  23. Vlasova, E. V. (2015). Osobennosti struktury poverhnosti mezhoperacionnyh tripolifosfatnyh pokrytiy. Metallurgicheskaya i gornorudnaya promyshlennost', 3, 59–62.
  24. Hain, I. I. (1973). Teoriya i praktika fosfatirovaniya metallov. Leningrad: Himiya, 312.
  25. Vlasova, E. V., Karasik, T. L. (2010). Issledovanie pokrytiy, poluchennyh iz vodnyh rastvorov fosfatov. Zhurn. Metallurgicheskaya i gornorudnaya promyshlennost', 5, 89–91.

Downloads

Published

2017-06-19

How to Cite

Vlasova, O., Kovalenko, V., Kotok, V., Vlasov, S., & Cheremysinova, A. (2017). Investigation of physical and chemical properties and structure of tripolyphosphate coatings on zinc plated steel. Eastern-European Journal of Enterprise Technologies, 3(12 (87), 4–8. https://doi.org/10.15587/1729-4061.2017.103151

Issue

Section

Materials Science