Calculation of throughputs of intermediate centers in three-index transportation problems

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.103950

Keywords:

transportation problem with intermediate centers, calculation of throughputs of intermediate centers

Abstract

A transportation problem of linear programming with intermediate centers was considered. For cases where throughputs of intermediate centers are not specified, a problem of calculating rational distribution of the total throughput in order to minimize the average value of total transportation costs has been stated. Several options of constructing the method for solving the problem were proposed. The first option implements the iterative procedure of successive improvement of the initial distribution of throughputs of the centers by the Nelder-Mead method. Increase in speed of this method was achieved using the duality theory. The second option is based on a preliminary solution of the problem of finding optimal routes for all pairs "supplier-consumer" taking into account a possible intermediate center. In this case, the usual two-index transportation problem of delivering products from the system of suppliers to the system of consumers arises. The optimal plan of this task contains necessary data to calculate required throughput for each of the intermediate centers. Advantage of this method consists in the possibility of its effective propagation for solving problems with a multilayered structure of intermediate centers

Author Biographies

Lev Raskin, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor, Head of Department

Department of Computer Monitoring and logistics

Oksana Sira, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor

Department of Computer Monitoring and logistics

Viacheslav Karpenko, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Lecturer

Department of Computer Monitoring and logistics 

References

  1. Raskin, L. G., Kirichenko, I. O. (1982). Mnogoindeksnye zadachi lineynogo programmirovaniya. Moscow: Radio i svyaz', 240.
  2. Gol'shteyn, E. G., Yudin, D. B. (1969). Zadachi lineynogo programmirovaniya transportnogo tipa. Moscow: Nauka, 482.
  3. Halley, K. B. (1962). The solid transportation problem. Operations Research, 10 (4), 448–463.
  4. Corban, A. (1964). A multidimensional transportation problem. Revue Roum. Mat. Appl., 9 (8), 14–27.
  5. Corban, A. (1971). Transportation problem with intermediate centers. Rev. Roum. Mat. Pures Appl., 16 (9).
  6. Corban, A. (1971). Modelul tridimensional de transport cu capacitate. Stud. Cerc. Mat., 23 (9), 99–106.
  7. Seraya, O. V. (2010). Mnogomernye modeli logistiki v usloviyah neopredelennosti. Kharkiv: FOP Stecenko I. I., 512.
  8. Cerhes, M. (1970). Programe tridimensionala. Bucuresti: Ed. Tehn., 268.
  9. Kundu, P., Kar, S., Maiti, M. (2013). Multi-objective solid transportation problems with budget constraint in uncertain environment. International Journal of Systems Science, 45 (8), 1668–1682. doi: 10.1080/00207721.2012.748944
  10. Kundu, P., Kar, S., Maiti, M. (2013). Multi-objective multi-item solid transportation problem in fuzzy environment. Applied Mathematical Modelling, 37 (4), 2028–2038. doi: 10.1016/j.apm.2012.04.026
  11. Mahapatra, D. R., Roy, S. K., Biswal, M. P. (2013). Multi-choice stochastic transportation problem involving extreme value distribution. Applied Mathematical Modelling, 37 (4), 2230–2240. doi: 10.1016/j.apm.2012.04.024
  12. Giri, P. K., Maiti, M. K., Maiti, M. (2015). Fully fuzzy fixed charge multi-item solid transportation problem. Applied Soft Computing, 27, 77–91. doi: 10.1016/j.asoc.2014.10.003
  13. Motzkin, T. S. (1982). The multi-index transportation problem. Bull. Amer. Mat. Soc., 58 (4).
  14. Smith, G. (1973). Technical Note – Further Necessary Conditions for the Existence of a Solution to the Multi-Index Problem. Operations Research, 21 (1), 380–386. doi: 10.1287/opre.21.1.380
  15. Stoynova-Pen'kova, N. (1970). Trindeksna transportna zadacha. Sofiya: Tr. Vyssh. Ekonom. In-t, 70–78.
  16. Pierskalla, W. P. (1968). Letter to the Editor – The Multidimensional Assignment Problem. Operations Research, 16 (2), 422–431. doi: 10.1287/opre.16.2.422
  17. Raskin, L. G. (1988). Matematicheskie metody issledovaniya operaciy i analiza slozhnyh sistem vooruzheniya PVO. Kharkiv: VIRTA, 177.
  18. Williams, A. C. (1963). A Stochastic Transportation Problem. Operations Research, 11 (5), 759–770. doi: 10.1287/opre.11.5.759
  19. Szwarc, W. (1964). The Transportation Problem with Stochastic Demand. Management Science, 11 (1), 33–50. doi: 10.1287/mnsc.11.1.33
  20. Raskin, L. G., Seraya, O. V. (2008). Nechetkaya matematika. Kharkiv: Parus, 352.
  21. Raskin, L., Sira, O. (2016). Method of solving fuzzy problems of mathematical programming. Eastern-European Journal of Enterprise Technologies, 5 (4 (83)), 23–28. doi: 10.15587/1729-4061.2016.81292
  22. Pawlak, Z. (1982). Rough sets. International Journal of Information and Computer Sciences, 11 (5), 341–356.
  23. Raskin, L., Sira, O. (2016). Fuzzy models of rough mathematics. Eastern-European Journal of Enterprise Technologies, 6 (4 (84)), 53–60. doi: 10.15587/1729-4061.2016.86739
  24. Raskin, L. G., Kirichenko, I. O. (2005). Kontinual'noe lineynoe programmirovanie. Kharkiv: VIVV, 175.

Downloads

Published

2017-06-30

How to Cite

Raskin, L., Sira, O., & Karpenko, V. (2017). Calculation of throughputs of intermediate centers in three-index transportation problems. Eastern-European Journal of Enterprise Technologies, 3(4 (87), 31–37. https://doi.org/10.15587/1729-4061.2017.103950

Issue

Section

Mathematics and Cybernetics - applied aspects