Research into composition and properties of the Ni–Fe electrolytic alloy

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.106864

Keywords:

electrodeposition, Ni–Fe alloy, sodium saccharinate, magnetic properties, internal stresses, microhardness, methanesulfonate electrolyte

Abstract

Promising yet insufficiently studied is the new electrolyte based on methanesulfonate salts of the alloy-forming metals. Examining the laws that govern the electrodeposition of the Ni–Fe alloy with assigned physical-chemiсal properties from the methanesulfonate electrolyte is a relevant task. In the present work we established influence of the concentration of iron(ІІ) ions in the electrolyte and of current density on the composition of alloy. The content of iron in the Ni–Fe alloy grows with an increase in the concentration of iron(ІІ) ions in the methanesulfonate electrolyte. Dependence of the content of iron in the alloy on current density is of extreme character. The maximum corresponds to the current density of 1 A/dm2. It is shown that the organic additive applied in the present work, sodium saccharinate, does not exert any substantial influence on the composition of alloy at current density exceeding 2 A/dm2. Sodium saccharinate increases microhardness of the coating with the Ni–Fe alloy whose values reach 500 kg/cm2. When introducing into the methanesulfonate deposition electrolyte of the Ni–Fe alloy of 6 mmol/l of sodium saccharinate, practically unstressed precipitations precipitate. A reduction in the internal stresses leads to a decrease in the values of coercive force of the alloy. It is demonstrated that the investigated properties of the Ni–Fe precipitations are determined by the structure of coatings. Sodium saccharinate, being a surface-active compound under the conditions of electrolysis, changes the structure of the cathodic Ni–Fe alloy and improves functional characteristics of coatings. The established dependences represent a rather valuable basis for designing new technologies of the electrodeposition of polyfunctional coatings with the Ni–Fe alloy with enhanced mechanical and magnetic characteristics

Author Biographies

Yuri Sknar, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005

PhD, Associate Professor

Department of Electrochemical and Environmental Technologies

Irina Sknar, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005

PhD, Associate Professor

Department of Processes, Devices and General Chemical Technology

Anna Cheremysinova, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005

PhD, Associate Professor

Department of Processes, Devices and General Chemical Technology

Iryna Yermolenko, National Technical University “Kharkiv Polytechnic Institute” Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD

Scientific-research laboratory

Ann Karakurkchi, National Technical University “Kharkiv Polytechnic Institute” Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Head of Laboratory

Scientific-research laboratory

Vitaly Mizin, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005

PhD, Associate Professor

Department of Processes, Devices and General Chemical Technology

Valeriya Proskurina, National Technical University “Kharkiv Polytechnic Institute” Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Assistant

Department of General and Inorganic Chemistry

Yuliya Sachanova, National Technical University “Kharkiv Polytechnic Institute” Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Scientific-research laboratory

References

  1. Karakurkchi, A. V., Ved’, M. V., Sakhnenko, N. D., Yermolenko, I. Y. (2015). Electrodeposition of iron–molybdenum–tungsten coatings from citrate electrolytes. Russian Journal of Applied Chemistry, 88 (11), 1860–1869. doi: 10.1134/s1070427215011018x
  2. Yar-Mukhamedova, G., Ved, M., Sakhnenko, N., Karakurkchi, A., Yermolenko, I. (2016). Iron binary and ternary coatings with molybdenum and tungsten. Applied Surface Science, 383, 346–352. doi: 10.1016/j.apsusc.2016.04.046
  3. Danilov, F. I., Tkach, I. G., Sknar, I. V., Sknar, Y. E. (2014). Ni-Co alloy coatings obtained from methanesulfonate electrolytes. Protection of Metals and Physical Chemistry of Surfaces, 50 (5), 639–642. doi: 10.1134/s2070205114050062
  4. Karakurkchi, A. V. (2015). Functional properties of multicomponent galvanic alloys of iron with molybdenum and tungsten. Functional Materials, 22 (2), 181–187. doi: 10.15407/fm22.02.181
  5. Donolato, M., Dalslet, B. T., Damsgaard, C. D., Gunnarsson, K., Jacobsen, C. S., Svedlindh, P., Hansen, M. F. (2011). Size-dependent effects in exchange-biased planar Hall effect sensor crosses. Journal of Applied Physics, 109 (6), 064511. doi: 10.1063/1.3561364
  6. McNeil, R. P. G., Schneble, R. J., Kataoka, M., Ford, C. J. B., Kasama, T., Dunin-Borkowski, R. E. et. al. (2010). Localized Magnetic Fields in Arbitrary Directions Using Patterned Nanomagnets. Nano Letters, 10 (5), 1549–1553. doi: 10.1021/nl902949v
  7. Wang, Z. K., Zhang, V. L., Lim, H. S., Ng, S. C., Kuok, M. H., Jain, S., Adeyeye, A. O. (2010). Nanostructured Magnonic Crystals with Size-Tunable Bandgaps. ACS Nano, 4 (2), 643–648. doi: 10.1021/nn901171u
  8. Shorowordi, K. M., Moniruzzaman, M., Taufique, M. F. N., Azam, A. (2017). Effect of Ni/Fe ratio of electrolyte salts on the magnetic property of electrodeposited Fe–Ni alloy. Surface Engineering and Applied Electrochemistry, 53 (1), 52–58. doi: 10.3103/s1068375517010124
  9. Rousse, C., Fricoteaux, P. (2011). Electrodeposition of thin films and nanowires Ni–Fe alloys, study of their magnetic susceptibility. Journal of Materials Science, 46 (18), 6046–6053. doi: 10.1007/s10853-011-5566-9
  10. Su, X., Qiang, C. (2012). Influence of pH and bath composition on properties of Ni–Fe alloy films synthesized by electrodeposition. Bulletin of Materials Science, 35 (2), 183–189. doi: 10.1007/s12034-012-0284-8
  11. Tabakovic, I., Inturi, V., Thurn, J., Kief, M. (2010). Properties of Ni1−xFex (0.1<x<0.9) and Invar (x=0.64) alloys obtained by electrodeposition. Electrochimica Acta, 55 (22), 6749–6754. doi: 10.1016/j.electacta.2010.05.095
  12. Solmaz, R., Kardas, G. (2009). Electrochemical deposition and characterization of NiFe coatings as electrocatalytic materials for alkaline water electrolysis. Electrochimica Acta, 54 (14), 3726–3734. doi: 10.1016/j.electacta.2009.01.064
  13. Navarro-Flores, E., Chong, Z., Omanovic, S. (2005). Characterization of Ni, NiMo, NiW and NiFe electroactive coatings as electrocatalysts for hydrogen evolution in an acidic medium. Journal of Molecular Catalysis A: Chemical, 226 (2), 179–197. doi: 10.1016/j.molcata.2004.10.029
  14. Ullal, Y., Hegde, A. C. (2014). Electrodeposition and electro-catalytic study of nanocrystalline Ni–Fe alloy. International Journal of Hydrogen Energy, 39 (20), 10485–10492. doi: 10.1016/j.ijhydene.2014.05.016
  15. Kim, K. H., Zheng, J. Y., Shin, W., Kang, Y. S. (2012). Preparation of dendritic NiFe films by electrodeposition for oxygen evolution. RSC Advances, 2 (11), 4759. doi: 10.1039/c2ra20241g
  16. Li, H., Jiang, F., Ni, S., Li, L., Sha, G., Liao, X. et. al. (2011). Mechanical behaviors of as-deposited and annealed nanostructured Ni–Fe alloys. Scripta Materialia, 65 (1), 1–4. doi: 10.1016/j.scriptamat.2011.03.029
  17. Vicenzo, A. (2013). Structure and Mechanical Properties of Electrodeposited Nanocrystalline Ni-Fe Alloys. Journal of the Electrochemical Society, 160 (11), D570–D577. doi: 10.1149/2.109311jes
  18. Yu, J., Wang, M., Li, Q., Yang, J., Liu, L. (2009). Effects of saccharin on microstructure and property of electro-deposited Ni-Fe alloys. Transactions of Nonferrous Metals Society of China, 19 (4), 805–809. doi: 10.1016/s1003-6326(08)60354-4
  19. Neurohr, K., Csik, A., Vad, K., Molnar, G., Bakonyi, I., Peter, L. (2013). Near-substrate composition depth profile of direct current-plated and pulse-plated Fe–Ni alloys. Electrochimica Acta, 103, 179–187. doi: 10.1016/j.electacta.2013.04.063
  20. Torabinejad, V., Aliofkhazraei, M., Assareh, S., Allahyarzadeh, M. H., Rouhaghdam, A. S. (2017). Electrodeposition of Ni-Fe alloys, composites, and nano coatings – A review. Journal of Alloys and Compounds, 691, 841–859. doi: 10.1016/j.jallcom.2016.08.329
  21. Fazli, S., Bahrololoom, M. E. (2016). Effect of plating time on electrodeposition of thick nanocrystalline permalloy foils. Transactions of the IMF, 94 (2), 92–98. doi: 10.1080/00202967.2015.1122918
  22. Sekar, R., Jayakrishnan, S. (2012). Effect of sulphonic acids on electrodeposition of nickel and its structural and corrosion behaviour. Transactions of the IMF, 90 (6), 324–329. doi: 10.1179/0020296712z.00000000032
  23. Danilov, F. I., Sknar, I. V., Sknar, Y. E. (2014). Electroplating of Ni-Fe alloys from methanesulfonate electrolytes. Russian Journal of Electrochemistry, 50 (3), 293–296. doi: 10.1134/s1023193514030045
  24. Sknar, Y. E., Amirulloeva, N. V., Sknar, I. V., Danylov, F. I. (2016). Influence of Methylsulfonate Anions on the Structure of Electrolytic Cobalt Coatings. Materials Science, 52 (3), 396–401. doi: 10.1007/s11003-016-9970-9
  25. Danilov, F. I., Samofalov, V. N., Sknar, I. V., Sknar, Y. E., Baskevich, A. S., Tkach, I. G. (2015). Structure and properties of Ni–Co alloys electrodeposited from methanesulfonate electrolytes. Protection of Metals and Physical Chemistry of Surfaces, 51 (5), 812–816. doi: 10.1134/s2070205115050068

Downloads

Published

2017-08-29

How to Cite

Sknar, Y., Sknar, I., Cheremysinova, A., Yermolenko, I., Karakurkchi, A., Mizin, V., Proskurina, V., & Sachanova, Y. (2017). Research into composition and properties of the Ni–Fe electrolytic alloy. Eastern-European Journal of Enterprise Technologies, 4(12 (88), 4–10. https://doi.org/10.15587/1729-4061.2017.106864

Issue

Section

Materials Science