The rotating chamber granular fill shear layer flow simulation

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.107242

Keywords:

granular fill, rotating chamber, shear layer, gravitational flow, velocity distribution

Abstract

The simplicity of design solutions of the drum type machines is paradoxically combined with the extremely difficult-to-describe behavior of the treated medium. The workflow efficiency of such equipment is determined by the dynamic activity of the shear part of the fill.

The traditional hypothesis of the two-phase flow regime of the granular fill of the rotating chamber ignores the shear layer formation. However, recent numerical and experimental results approach the flow regimes of the studied medium only in terms of qualitative characteristics.

The analytical model of the behavior of the shear layer of the granular fill near the free surface in the cross-section of the cylindrical chamber rotating around a horizontal axis is constructed. The equations for the mean value and the velocity distribution along the normal to the flow direction of the layer are obtained. They allow determining the shear velocity profile of the layer approximately, depending on the kinematic, geometric and rheological parameters of the system. Granular fill is considered as a continuous medium with the volume-averaged parameters. A plastic rheological model is adopted.

Based on the performed simulation, the fields of stresses and velocities in the fill mass in the cross-section of the rotating chamber are formalized using the system of differential equations of the two-dimensional state of the flowing granular medium. It is shown that such gravitational flow arises from the conditional, additional to gravitational, vertical inertial acceleration, which is due to the previous growth of kinetic energy of the layer in the non-free-fall zone of the fill. It is found that the flow of the shear layer near the free fill surface is realized in the form of gravitational flow without slipping along the supporting boundary surface of the quasi-solid-state zone that is shifted up.

It is found that the values of the average and maximum velocity of the shear layer of the fill depend on the chamber radius, the radial coordinate of the basis of the considered section of the layer, its thickness, filling degree and chamber rotation velocity, friction angle of the fill and angle of inclination of the layer to the horizontal.

Author Biographies

Yuriy Naumenko, National University of Water and Environmental Engineering Soborna str., 11, Rivne, Ukraine, 33028

Doctor of Technical Sciences, Associate Professor

Department of construction, road, reclamation, agricultural machines and equipment

Volodymyr Sivko, Kyiv National University of Construction and Architecture Povitroflotsky Avenue, 31, Kyiv, Ukraine, 03037

Doctor of Technical Sciences, Professor

Department of machinery and equipment manufacturing processes

References

  1. Andreev, S. E., Perov, V. A., Zverevich, V. V. (1980). Droblenie, izmel'chenie i grohochenie poleznyh iskopaemyh. Moscow: Nedra, 415.
  2. Naumenko, Yu. V. (1999). The antitorque moment in a partially filled horizontal cylinder. Theoretical Foundations of Chemical Engineering, 33 (1), 91–95.
  3. Naumenko, Yu. V. (2000). Determination of rational rotation speeds of horizontal drum machines. Metallurgical and Mining Industry, 5, 89–92.
  4. Brewster, R., Grest, G. S., Levine, A. J. (2009). Effects of cohesion on the surface angle and velocity profiles of granular material in a rotating drum. Physical Review E, 79 (1). doi: 10.1103/physreve.79.011305
  5. Third, J. R., Scott, D. M., Scott, S. A., Muller, C. R. (2010). Tangential velocity profiles of granular material within horizontal rotating cylinders modelled using the DEM. Granular Matter, 12 (6), 587–595. doi: 10.1007/s10035-010-0199-2
  6. Demagh, Y., Ben Moussa, H., Lachi, M., Noui, S., Bordja, L. (2012). Surface particle motions in rotating cylinders: Validation and similarity for an industrial scale kiln. Powder Technology, 224, 260–272. doi: 10.1016/j.powtec.2012.03.002
  7. Cheng, N.-S., Zhou, Q., Keat Tan, S., Zhao, K. (2011). Application of incomplete similarity theory for estimating maximum shear layer thickness of granular flows in rotating drums. Chemical Engineering Science, 66 (12), 2872–2878. doi: 10.1016/j.ces.2011.03.050
  8. Pignatel, F., Asselin, C., Krieger, L., Christov, I. C., Ottino, J. M., Lueptow, R. M. (2012). Parameters and scalings for dry and immersed granular flowing layers in rotating tumblers. Physical Review E, 86 (1). doi: 10.1103/physreve.86.011304
  9. Felix, G., Falk, V., D’Ortona, U. (2007). Granular flows in a rotating drum: the scaling law between velocity and thickness of the flow. The European Physical Journal E, 22 (1), 25–31. doi: 10.1140/epje/e2007-00002-5
  10. Hsu, L., Dietrich, W. E., Sklar, L. S. (2008). Experimental study of bedrock erosion by granular flows. Journal of Geophysical Research, 113 (F2). doi: 10.1029/2007jf000778
  11. Cheng, N.-S. (2012). Scaling law for velocity profiles of surface granular flows observed in rotating cylinders. Powder Technology, 218, 11–17. doi: 10.1016/j.powtec.2011.11.017
  12. Orpe, A. V., Khakhar, D. V. (2007). Rheology of surface granular flows. Journal of Fluid Mechanics, 571, 1. doi: 10.1017/s002211200600320x
  13. Aissa, A. A., Duchesne, C., Rodrigue, D. (2012). Transverse mixing of polymer powders in a rotary cylinder part I: Active layer characterization. Powder Technology, 219, 193–201. doi: 10.1016/j.powtec.2011.12.040
  14. Mandal, S., Khakhar, D. V. (2017). An experimental study of the flow of nonspherical grains in a rotating cylinder. AIChE Journal. doi: 10.1002/aic.15772
  15. Sanfratello, L., Caprihan, A., Fukushima, E. (2006). Velocity depth profile of granular matter in a horizontal rotating drum. Granular Matter, 9 (1-2), 1–6. doi: 10.1007/s10035-006-0023-1
  16. Alizadeh, E., Dube, O., Bertrand, F., Chaouki, J. (2013). Characterization of Mixing and Size Segregation in a Rotating Drum by a Particle Tracking Method. AIChE Journal, 59 (6), 1894–1905. doi: 10.1002/aic.13982
  17. Chou, H. T., Chou, S. H., Hsiau, S. S. (2014). The effects of particle density and interstitial fluid viscosity on the dynamic properties of granular slurries in a rotating drum. Powder Technology, 252, 42–50. doi: 10.1016/j.powtec.2013.10.034
  18. Rasouli, M., Bertrand, F., Chaouki, J. (2014). A multiple radioactive particle tracking technique to investigate particulate flows. AIChE Journal, 61 (2), 384–394. doi: 10.1002/aic.14644
  19. Govender, I., Pathmathas, T. (2016). A positron emission particle tracking investigation of the flow regimes in tumbling mills. Journal of Physics D: Applied Physics, 50 (3), 035601. doi: 10.1088/1361-6463/aa5125
  20. Rasouli, M., Dube, O., Bertrand, F., Chaouki, J. (2016). Investigating the dynamics of cylindrical particles in a rotating drum using multiple radioactive particle tracking. AIChE Journal, 62 (8), 2622–2634. doi: 10.1002/aic.15235
  21. Sheng, L.-T., Chang, W.-C., Hsiau, S.-S. (2016). Influence of particle surface roughness on creeping granular motion. Physical Review E, 94 (1). doi: 10.1103/physreve.94.012903
  22. Alizadeh, E., Bertrand, F., Chaouki, J. (2013). Comparison of DEM results and Lagrangian experimental data for the flow and mixing of granules in a rotating drum. AIChE Journal, 60 (1), 60–75. doi: 10.1002/aic.14259
  23. Komossa, H., Wirtz, S., Scherer, V., Herz, F., Specht, E. (2014). Transversal bed motion in rotating drums using spherical particles: Comparison of experiments with DEM simulations. Powder Technology, 264, 96–104. doi: 10.1016/j.powtec.2014.05.021
  24. Schlick, C. P., Fan, Y., Umbanhowar, P. B., Ottino, J. M., Lueptow, R. M. (2015). Granular segregation in circular tumblers: theoretical model and scaling laws. Journal of Fluid Mechanics, 765, 632–652. doi: 10.1017/jfm.2015.4
  25. Santos, D. A., Dadalto, F. O., Scatena, R., Duarte, C. R., Barrozo, M. A. S. (2015). A hydrodynamic analysis of a rotating drum operating in the rolling regime. Chemical Engineering Research and Design, 94, 204–212. doi: 10.1016/j.cherd.2014.07.028
  26. Santos, D. A., Barrozo, M. A. S., Duarte, C. R., Weigler, F., Mellmann, J. (2016). Investigation of particle dynamics in a rotary drum by means of experiments and numerical simulations using DEM. Advanced Powder Technology, 27 (2), 692–703. doi: 10.1016/j.apt.2016.02.027
  27. Ryazhskykh, V. Y., Chernukhyn, Yu. V. (2000). Statsyonarnoe hravytatsyonnoe dvyzhenye sypuchey sredy. Teoret. osnovy khym. tekhnolohyy, 34, 5, 553-554.
  28. Dolgunin, V. N., Borshchev, V. Ya. (2005). Bystrye gravitacionnye techeniya zernistyh materialov: tekhnika izmereniya, zakonomernosti, tekhnologicheskoe primenenie. Moscow: Izd-vo Mashinostroenie-1, 112.
  29. Govender, I. (2016). Granular flows in rotating drums: A rheological perspective. Minerals Engineering, 92, 168–175. doi: 10.1016/j.mineng.2016.03.021
  30. Geniev, G. A. (1958). Voprosy dinamiki sypuchey sredy. Moscow: Gosstroyizdat, 122.
  31. Naumenko, Y. (2017). Modeling of fracture surface of the quasi solid-body zone of motion of the granular fill in a rotating chamber. Eastern-European Journal of Enterprise Technologies, 2 (1 (86)), 50–57. doi: 10.15587/1729-4061.2017.96447

Downloads

Published

2017-08-22

How to Cite

Naumenko, Y., & Sivko, V. (2017). The rotating chamber granular fill shear layer flow simulation. Eastern-European Journal of Enterprise Technologies, 4(7 (88), 57–64. https://doi.org/10.15587/1729-4061.2017.107242

Issue

Section

Applied mechanics