Research into methane oxidation on oxide catalyst of the applied type

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.107249

Keywords:

catalyst, metal oxides, mineral fiber, methane oxidation, specific surface area

Abstract

Technical characteristics and activity of oxide catalyst, applied on fibers ALSIFLEX-KT1600, were studied. As a catalytic contact, we used spinel (% by weight): Al2O3 – 10; MgO – 3; (Cr2O3+NiO) – 0.4.

As a result of conducted studies, the structure of the carrier and the catalyst were studied, anisotropy of properties was established, and technical characteristics were deftermined: density of the catalyst, which made up 0.3 g/m3, 90.4 % porosity, hydrodynamic resistance of the catalyst’s layer at different voluminous loads, and specific surface area. Catalyst activity was studied at complete methane oxidation. Activation energy Ea made up 86.241 kJ/mol, while temperature of complete methane conversion amounted to 800 °C and that of 50 % conversion made up 550 °C. Macrokinetic equation of the rate of complete methane oxidation for this catalyst was obtained. Research results proved high activity of the catalyst, resistant to exposure to high temperatures (1000–1200 °C) and volumetric loading (t=0.03–0.05 s).

The obtained results indicate relevance of the use of the developed catalyst for catalytically stabilized combustion of hydrocarbon fuels with improved performance, technological and environmental characteristics.

Author Biographies

Alexey Popovich, Institute of Chemical Technologies Volodymyr Dahl East Ukrainian National University Volodymyrska str., 31, Rubizhne, Ukraine, 93010

Engineer

Department of General physics and technical mechanics

Gennadiy Soloviev

PhD, Associate Professor

Alexander Suvorin, Volodymyr Dahl East Ukrainian National University Tsentralnyi ave., 59-a, Severodonetsk, Ukraine, 93400

Doctor of Technical Sciences, Professor

Department of the chemical engineering and ecology 

References

  1. Vlasenko, V. M. (2010). Ehkologicheskiy kataliz. Kyiv: Naukova dumka, 237.
  2. Rayak, M. B., Berner, G. Ya., Klinker, M. G. (2011). Sovershenstvovanie processa szhiganiya topliva. Obzor zarubezhnyh tekhnologiy. Novosti teplosnabzheniya, 12.
  3. Klimash, A. A., Lavka, S. V., Solov'yov, G. I. (2011). Razrabotka sposobov prigotovleniya, issledovaniya aktivnosti metallofol'govyh i keramicheskih sotovyh katalizatorov v reakcii glubokogo okisleniya metana. Strategiya kachestva v promyshlennosti i obrazovanii, 3, 114–116.
  4. Jeong, M., Nunotani, N., Moriyama, N., Imanaka, N. (2016). High methane combustion activity of PdO/CeO2–ZrO2–NiO/γ-Al2O3 catalysts. Journal of Asian Ceramic Societies, 4 (3), 259–262. doi: 10.1016/j.jascer.2016.05.004
  5. Kurzina, I. A. (2005). Glubokoe okislenie metana na platinovyh i palladievyh katalizatorah, nanesennyh na nitrid kremniya. Izvestiya Tomskogo politekhnicheskogo universiteta, 308 (4), 104–109.
  6. Kirienko, P. I., Popovich, N. A., Solov'ev, S. A., Knyazev, Yu. V., Slipec, O. O., Solov'eva, E. A. (2010). Development of multicomponent metal-oxide of catalysts of neutralization of internal combustion engine exhausts. Eastern-European Journal of Enterprise Technologies, 2 (6 (44)), 18–24. Available at: http://journals.uran.ua/eejet/article/view/2679/2485
  7. Gholami, R., Alyani, M., Smith, K. (2015). Deactivation of Pd Catalysts by Water during Low Temperature Methane Oxidation Relevant to Natural Gas Vehicle Converters. Catalysts, 5 (2), 561–594. doi: 10.3390/catal5020561
  8. Williams, S., Hu, L. (Robin), Nakazono, T., Ohtsubo, H., Uchida, M. (2008). Oxidation Catalysts for Natural Gas Engine Operating under HCCI or SI Conditions. SAE International Journal of Fuels and Lubricants, 1 (1), 326–337. doi: 10.4271/2008-01-0807
  9. Otroshchenko, T. P., Turakulova, A. O., Voblikova, V. A., Sabitova, L. V., Kucev, S. V., Lunin, V. V. (2013). Katalizatory na osnove NiO i ZrO2 v reakcii polnogo okisleniya metana. Zhurnal fizicheskoy himii, 87 (11), 1836–1840. doi: 10.7868/s0044453713110198
  10. Sohn, J. M., Kim, M. R., Woo, S. I. (2003). The catalytic activity and surface characterization of Ln2B2O7 (Ln=Sm, Eu, Gd and Tb; B=Ti or Zr) with pyrochlore structure as novel CH4 combustion catalyst. Catalysis Today, 83 (1-4), 289–297. doi: 10.1016/s0920-5861(03)00249-9
  11. Mirzababaei, J., Chuang, S. (2014). La0.6Sr0.4Co0.2Fe0.8O3 Perovskite: A Stable Anode Catalyst for Direct Methane Solid Oxide Fuel Cells. Catalysts, 4 (2), 146–161. doi: 10.3390/catal4020146
  12. Villacampa, J. I., Royo, C., Romeo, E., Montoya, J. A., Del Angel, P., Monzon, A. (2003). Catalytic decomposition of methane over Ni-Al2O3 coprecipitated catalysts. Applied Catalysis A: General, 252 (2), 363–383. doi: 10.1016/s0926-860x(03)00492-7
  13. Gulyaeva, Yu. K. (2014). Novel fiberglass based Pd catalysts for selective acetylene hydrogenation processes. Book of abstracts of the 11th International Symposium on the Scientific Bases for the Preparation of Heterogeneous Catalysts. Louvain-la-Neuve, Belgium, 245–246.
  14. Pushnov, A., Baltrenas, P., Kagan, A., Zagorskis, A. (2010). Aehrodinamika vozduhoochistnyh ustroystv s zernistym sloem. Vil'nyus: Tekhnika, 348.
  15. Liotta, L., Dicarlo, G., Pantaleo, G., Deganello, G. (2005). CoO/CeO and CoO/CeO–ZrO composite catalysts for methane combustion: Correlation between morphology reduction properties and catalytic activity. Catalysis Communications, 6 (5), 329–336. doi: 10.1016/j.catcom.2005.02.006
  16. Park, J.-H., Ahn, J.-H., Sim, H.-I., Seo, G., Han, H. S., Shin, C.-H. (2014). Low-temperature combustion of methane using PdO/Al2O3 catalyst: Influence of crystalline phase of Al2O3 support. Catalysis Communications, 56, 157–163. doi: 10.1016/j.catcom.2014.07.022
  17. Bayramov, V. M. (2003). Osnovy himicheskoy kinetiki i kataliza. Moscow: Izdat. Centr «Akademiya», 256.
  18. Popovich, A. N., Klimash, A. A., Solov'ev, G. I., Suvorin, A. V. (2016). Perspektivy ispol'zovaniya kataliticheski stabilizirovannyh gorelok dlya ehnergoehffektivnogo i ehkologicheski bezoparnogo szhiganiya prirodnogo gaza. Innovacionnye puti modernizacii bazovyh otrasley promyshlennosti, ehnergo- i resursosberezhenie, ohrana okruzhayushchey prirodnoy sredy. Kharkiv: GP «UkrNTC «Ehnergostal'», 50–56.

Downloads

Published

2017-08-22

How to Cite

Popovich, A., Soloviev, G., & Suvorin, A. (2017). Research into methane oxidation on oxide catalyst of the applied type. Eastern-European Journal of Enterprise Technologies, 4(6 (88), 29–34. https://doi.org/10.15587/1729-4061.2017.107249

Issue

Section

Technology organic and inorganic substances