Effect of flame retardant fillers on the rheological properties of composite materials of ethylene-vinyl acetate copolymer

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.108187

Keywords:

composite materials, fire resistance, ethylene-vinyl acetate copolymer, flame-retardant fillers, rheological properties

Abstract

We determined that viscous flow processes are influenced by composite materials of ethylene-vinyl acetate copolymer that do not sustain combustion and by flame retardant fillers. In the study, ethylene-vinyl acetate copolymer was used. The content of vinyl acetate is 18 % and 28 %; MFI is 2.5 g/10 min or 5 g/10 min. Flame retardant fillers include aluminum oxide trihydrates with an average diameter of particles of 1.5 µm and 3.0 µm; magnesium oxide dihydrates with an average diameter of particles of 3.0 μm and 3.7 μm and hydromagnesite with an average diameter of particles of 1.4 μm.

By using the method of capillary viscosimetry, we defined the following characteristics: melt flow index, shear stress, shear rate, effective viscosity and activation energy of viscous flow. Melt flow index decreases as the concentration of flame retardant fillers increases. The same tendency is observed when using flame retardant fillers with smaller average diameter of particles. Shear stress and effective viscosity, in contrast, increase.

We determined the influence of polymeric matrix, composition and dispersion of flame retardant fillers on the rheological characteristics of polymeric compositions. The use of EVA with melt flow index of 5 g/10 min makes it possible to obtain the filled polymeric compositions with improved rheological properties.

The obtained results might be useful in the process of designing the formulations for polymeric compositions for cable products and for regulating technological indicators during their processing.

Author Biography

Olena Chulieieva, PJSC «YUZHCABLE WORKS» Avtohenna str., 7, Kharkiv, Ukraine, 61099

PhD, Chief specialist for Polymeric Materials

Science and Technology Center 

References

  1. Peshkov, I. B. (2013) Materialy kabel'nogo proizvodstva. Moscow: Mashinostroenie, 456.
  2. Tirelli, D. (2013) Antipireny dlya kompozitov. The Chemical Journal, 1-2, 42–45.
  3. Obzor mineral'nykh antipirenov-gidroksidov dlya bezgalogennykh kabel'nikh kompozitsiy (2009). Kabel'-news, 8, 41–43.
  4. Cárdenas, M. A., García-López, D., Gobernado-Mitre, I., Merino, J. C., Pastor, J. M., Martínez, J. de D. et. al. (2008). Mechanical and fire retardant properties of EVA/clay/ATH nanocomposites – Effect of particle size and surface treatment of ATH filler. Polymer Degradation and Stability, 93 (11), 2032–2037. doi: 10.1016/j.polymdegradstab.2008.02.015
  5. Laoutid, F., Lorgouilloux, M., Lesueur, D., Bonnaud, L., Dubois, P. (2013). Calcium-based hydrated minerals: Promising halogen-free flame retardant and fire resistant additives for polyethylene and ethylene vinyl acetate copolymers. Polymer Degradation and Stability, 98 (9), 1617–1625. doi: 10.1016/j.polymdegradstab.2013.06.020
  6. Formosa, J., Chimenos, J. M., Lacasta, A. M., Haurie, L. (2011). Thermal study of low-grade magnesium hydroxide used as fire retardant and in passive fire protection. Thermochimica Acta, 515 (1-2), 43–50. doi: 10.1016/j.tca.2010.12.018
  7. Lujan-Acosta, R., Sánchez-Valdes, S., Ramírez-Vargas, E., Ramos-DeValle, L. F., Espinoza-Martinez, A. B., Rodriguez-Fernandez, O. S. et. al. (2014). Effect of Amino alcohol functionalized polyethylene as compatibilizer for LDPE/EVA/clay/flame-retardant nanocomposites. Materials Chemistry and Physics, 146 (3), 437–445. doi: 10.1016/j.matchemphys.2014.03.050
  8. Chang, M.-K., Hwang, S.-S., Liu, S.-P. (2014). Flame retardancy and thermal stability of ethylene-vinyl acetate copolymer nanocomposites with alumina trihydrate and montmorillonite. Journal of Industrial and Engineering Chemistry, 20 (4), 1596–1601. doi: 10.1016/j.jiec.2013.08.004
  9. Makarova, N. V., Trofimets, V. Ya. (2002). Statistika v Excel. Moscow: Finansy i statistika, 368.
  10. Malkin, A. Ya., Isayev, A. I. (2007). Reologiya. Kontseptsii, metody, prilozheniya. Moscow: Professiya, 560.
  11. Shakh, V.; Malkina, A. Ya. (Ed.) (2009). Spravochnoe rukovodstvo po ispytaniyam plastmass i analizu prichin ih razrusheniya. SPb.: Nauchnye osnovy i tekhnologii, 732.
  12. Lipatov, Yu. S. (Ed.) (1977). Teplofizicheskiye i reologicheskiye kharakteristiki polimerov. Kyiv: Naukova dumka, 244.
  13. Mukhin, N. M., Buryndin, V. G. (2011). Opredeleniye reologicheskih i fiziko-mekhanicheskih svoystv polimernyh materialov. Metodicheskiye ukazaniya, Yekarenburg: Izdatelstvo UGLTU, 33.

Downloads

Published

2017-08-22

How to Cite

Chulieieva, O. (2017). Effect of flame retardant fillers on the rheological properties of composite materials of ethylene-vinyl acetate copolymer. Eastern-European Journal of Enterprise Technologies, 4(1 (88), 32–37. https://doi.org/10.15587/1729-4061.2017.108187

Issue

Section

Engineering technological systems