Study into properties of the resource­saving chromium­containing briquetted alloying additive from ore raw materials

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.108191

Keywords:

chromium-containing oxide ore raw materials, carbon thermal treatment, phase analysis, microstructure, resource saving, alloying

Abstract

It was determined that the original oxide chromium-containing ore raw material is represented by granules of rounded shape the size of 250–600 µm. Along with Cr and Fe, it revealed Mg, Al, Si, Ca, and Ti. They probably were included in the composition of oxide ore impurities and can exert an indirect influence on the reducing processes. Phase composition of the briquetted raw material after the carbon thermal treatment consisted mainly of Cr2O3 and metal Cr with the presence of carbides Cr7C3 and Cr2C3. Diffraction maxima of metal Fe and its compounds had no explicit manifestation, indicating the presence of Fe as substitution atoms in the chromium-containing phases and compounds. The structure is heterogeneous.

The content of residual oxygen confirms the presence, along with metal Cr, under-reduced oxide or oxy-carbide compounds. The residual oxygen could also be contained in the composition of oxide related ore impurities. This is confirmed by detection of the specified elements in the examined areas in the images of the microstructure. Excessive carbon content ensures the post-reduction of residual oxide component in a liquid metal in the process of alloying and enables protection against secondary oxidation of chromium

Author Biographies

Stanislav Hryhoriev, Zaporizhzhya national University Zhukovskiy str., 66, Zaporizhzhya, Ukraine, 69600

Doctor of Technical Sciences, Professor

Department of business administration and international management

Artem Petryshchev, Zaporizhzhya National Technical University Zhukovskiy str., 64, Zaporizhzhya, Ukraine, 69063

PhD, Associate Professor

Department of Labour and Environment Protection

Ganna Shyshkanova, Zaporizhzhya National Technical University Zhukovsky str., 64, Zaporizhzhya, Ukraine, 69063

PhD, Associate Professor

Department of Applied Mathematics 

Yurii Yakimtsov, Zaporizhzhya National Technical University Zhukovskiy str., 64, Zaporizhzhya, Ukraine, 69063

Assistant

Department of Labour and Environment Protection

Sergiy Zhuravel, Zaporizhzhya National Technical University Zhukovskiy str., 64, Zaporizhzhya, Ukraine, 69063

Senior Lecturer

Department of Labour and Environment Protection

Mykhail Yamshinskij, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Peremohy ave., 37, , Kyiv, Ukraine, 03056

PhD, Associate professor

Department of foundry of ferrous and nonferrous metals

Grigoriy Fedorov, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Peremohy ave., 37, , Kyiv, Ukraine, 03056

PhD, Associate professor

Department of foundry of ferrous and nonferrous metals

Dmytro Kruglyak, Zaporizhian state engineering academy Sobornyi, 226, Zaporizhzhya, Ukraine, 69006

PhD, Associate professor

Department of metal forming

Oleksii Shevchenko, Zaporizhzhya College of Radioelectronics of Zaporizhzhya National Technical University Sobornyi ave., 117, Zaporizhzhya, Ukraine, 69095

Lecture, specialist of the second category, Deputy director

Cyclic commission of the speciality "The Production and Technical Maintenance of electronic technique"

Yevgen Goliev, Zaporizhzhya state engineer academy Sobornyi ave., 226, Zaporizhzhya, Ukraine, 69006

Postgraduate student

Department of metallurgy

References

  1. Yuzov, O. V., Sedyh, A. M. (2017). Tendencii razvitia mirovogo rynka stali. Stal, 2, 60–67.
  2. Puttkammer, K., Fornkal, P. (2017). Kompleksnoe planirovanie proizvodstva – uchet energo- i resursoeffektivnosti. Chernye metally, 2, 56–60.
  3. Tarasov, A. V. (2011). Mineralnoe syrjo, novye tehnologii i razvitie proizvodstva tugoplavkih redkih metallov v Rossii i stranah SNG. Tsvetnye metally, 6, 57–66.
  4. Leont’ev, L. I., Grigorovich, K. V., Kostina, M. V. (2016). The development of new metallurgical materials and technologies. Part 1. Steel in Translation, 46 (1), 6–15. doi: 10.3103/s096709121601006x
  5. Simonov, V. K., Grishin, A. M. (2015). Termodinamicheskii analiz i osobennosti kinetiki vosstanovleniya Cr2O3 uglerodom samostoyatelno i v potoke CO, H2. Elektrometallurgia, 9, 9–18.
  6. Akimov, E. V., Senin, A. V., Roschin, V. E. (2013). Termodinamicheskii analiz poluchenia nizkouglerodistogo ferrohroma s primeneniem modeli associirovannyh rastvorov. Vestnik Yuzhno-Uralskogo gosudarstvennogo universiteta. Seria: Metallurgiya, 13, 1, 182–185.
  7. Simonov, V. K., Grishin, A. M. (2012). Termodinamicheskii analis i osobennosti mehanizma tverdofaznogo vosstanovlenia Cr2O3 uglerodom. Part 1. Elektrometallurgia, 9, 21–26.
  8. Simonov, V. K., Grishin, A. M. (2012). Termodinamicheskii analis i osobennosti mehanizma tverdofaznogo vosstanovlenia Cr2O3 uglerodom. Part 2. Elektrometallurgia, 10, 13–18.
  9. Ryabchikov, I. V., Mizin, V. G., Yarovoi, K. I. (2013). Reduction of iron and chromium from oxides by carbon. Steel in Translation, 43 (6), 379–382. doi: 10.3103/s096709121306017x
  10. Ryabchikov, I. V., Belov, B. F., Mizin, V. G. (2014). Reactions of metal oxides with carbon. Steel in Translation, 44 (5), 368–373. doi: 10.3103/s0967091214050118
  11. Roshchin, V. E., Roshchin, A. V., Ahmetov, K. T., Povolockii, V. D., Goihenberg, Yu. N. (2015). Formirovanie mrtalicheskoi i karbidnoi faz pri poluchenii uglerodistogo ferrohroma: teoria i eksperiment. Problemy chernoi metalurgii i materialovedenia, 1, 5–18.
  12. Amdur, A. M., Lkhamsuren, M., Pavlov, V. V., Barnasan, P. (2014). Structure and thermodynamic activity of sooty carbon. Steel in Translation, 44 (6), 408–410. doi: 10.3103/s0967091214060023
  13. Pripisnov, O. N., Shelehov, E. V., Rupasov, S. I., Medvedev, A. S. (2014). Mehanizm fazoobrazovania i osobennosti mehanohimicheskogo sinteza karbidov hroma. Izvestia vysshih uchebnyh zavedenii. Poroshkovaya metallurgia i funkcionalnie pokrytia, 3, 8–15.
  14. Pripisnov, O. N., Shelehov, E. V., Rupasov, S. I., Medvedev, A. S. (2014). Fazovye prevrashchenia v smesi Cr–C pri mehanoaktivacii i otzhige. Problemy chernoi metalurgii i materialovedenia, 2, 63–66.
  15. Zhao, L., Wang, L., Chen, D., Zhao, H., Liu, Y., Qi, T. (2015). Behaviors of vanadium and chromium in coal-based direct reduction of high-chromium vanadium-bearing titanomagnetite concentrates followed by magnetic separation. Transactions of Nonferrous Metals Society of China, 25 (4), 1325–1333. doi: 10.1016/s1003-6326(15)63731-1
  16. Karpunina, M. S., Moskalenko, A. S., Grigorev, S. M., Markov, O. V. (2000). Termodinamika uglerodotermicheskogo vosstanovlenia hromovoi rudy. Izvestia vysshih uchebnyh zavedenii. Chernaya metallurgia, 1, 14–17.

Downloads

Published

2017-08-29

How to Cite

Hryhoriev, S., Petryshchev, A., Shyshkanova, G., Yakimtsov, Y., Zhuravel, S., Yamshinskij, M., Fedorov, G., Kruglyak, D., Shevchenko, O., & Goliev, Y. (2017). Study into properties of the resource­saving chromium­containing briquetted alloying additive from ore raw materials. Eastern-European Journal of Enterprise Technologies, 4(12 (88), 38–43. https://doi.org/10.15587/1729-4061.2017.108191

Issue

Section

Materials Science