Study of functioning of a vortex tube with a two-phase flow
DOI:
https://doi.org/10.15587/1729-4061.2017.108424Keywords:
dry cleaning, dust flow, vortex tube, Ranque effect, hydrodynamics, dust collection efficiency, agglomeration of particles, mathematical modelAbstract
As a result of consideration of the phenomena occurring in the vortex tubes, it has been established that there are two forms of swirling dust-gas flow. The circumferential velocity profile in the zone of swirler and return flow is close to the quasi-solid type of rotation. In the peripheral zone, it is close to the quasi-potential type. It has been established by simulation that in the zone of quasi-solid rotation and subsequent transition to a quasi-solid flow, aggregation of particles takes place due to an intense collision of the dust particles drifting to the walls of the vortex tube. There is a 5 to 10 times increase in the determining particle size depending on the value of their specific surface area. In the zone of quasi-potential flow, the bulk of the solid dust particles is concentrated near the tube walls in a zone close to the boundary layer and the dust-free gas concentrates in a zone close to the axial flow. Taking into account the effect of uneven distribution of the braking temperature and consequently creation of a positive gradient of gas temperatures from the tube axis to the walls, thermodynamic and kinetic conditions arise for destruction of CO, NOx, SOx gas impurities (in the case of hot gas with a temperature above 673 K). Thus, when preparing a dusty gas stream from a process source before feeding it to the dust collector, the vortex tube creates conditions for complex purification of the gas stream from dust and gas impurities. Also, efficiency of dust removal in the main unit increases to 99.9 %. This will make it possible to lower the industrial negative impact on atmosphere and reduce threat of global consequences for future generations.
References
- Chekalova, L. V. (2004). Ekotekhnika. Zashchita atmosfernogo vozduha ot vybrosov pyli, aerozoley i tumanov. Yaroslavl': Rus', 424.
- Zaytsev, O. N. (2002). Issledovanie protsessov lokalizatsii teplovyh vybrosov zakruchennymi potokami. Ekotekhnologiya i resursosberezhenie, 6, 70–72.
- Osipenko, V. V., Osipenko, V. D. (2009). Pat. No. 2430971 RU. Sposob suhoy ochistki domennogo gaza. MPK C21B 7/22. No. 2009132782/02; declareted: 31.08.2009; published: 10.10.2011, Bul. No. 28.
- Evans, P., Federston, U. B. (2008). Pat. No. 2415718 RU. Tsiklon s vhodnym patrubkom-separatorom i obvodnymi trubami dlya otvoda melkih chastits. MPK B04 C5/02 (2006.01), B04 C5/12 (2006.01), C21 B7/22 (2006.01). No. 2009134521/05; declareted: 13.02.2008; published: 10.04.2011, Bul. No. 10.
- Grunewald, G. (2010). Initial soil development in alkaline waste of soda production. Der Andere Verlag, 119.
- Richard, O. M. (2014). Environmental engineering: principles and practice. Wiley-Blackwell, 662.
- Vetoshin, A. G. (2016). Inzhenernaya zashchita okruzhayushchey sredy ot vrednyh vybrosov. Moscow: Infra-Inzheneriya, 416.
- Zlygostev, A. S. Metody ochistki i obezvrezhivaniya ventilyatsionnyh i tekhnologicheskih vybrosov. Zelenaya planeta. Available at: http://ecologylib.ru
- Hitrova, I. V., Novozhilova, T. B. (2004). Tekhnologiya utilizatsyi gazovyh vybrosov, tverdyh othodov i shlakov. Kharkiv: NTU «KhPI», 218.
- Grivko, E. V., Ishanova, O. S. (2013). Otsenka stepeni antropogennoy preobrazovannosti prirodno-tekhnogennyh sistem. Orenburg: OOO IPK "Universitet", 128.
- Amirov, R. Ya., Urakaev, I. M., Gareev, R. G. (2000). Tekhnologicheskie sistemy: Protsessy, konstruktsii, effektivnost'. Ufa: Gilem, 600.
- Batluk, V. A., Melnikov, O. V., Mirus, O. V. (2011). Zalezhnist efektyvnosti pylovlovlennia vidtsentrovoinertsiynykh aparativ vid konstruktsyi bunkera. Promyslova hidravlika i pnevmatyka, 2 (32), 44–47.
- Shaporev, V. P., Vasyliev, M. I. (2011). Deiaki aspekty modeliuvannia prystroiu kontaktuvannia faz. Promyslova hidravlika i pnevmatyka, 2 (32), 41–43.
- Kutepov, A. M., Latkin, A. S. (1999). Vihrevye protsessy dlya modifikatsyi dispersnih sistem. Moscow: Nauka, 270.
- Bogomolov, A., Sergina, N., Kondratenko, T. (2016). On Inertial Systems, Dust Cleaning and Dust Removal Equipment, and Work Areas in the Production of Aerated Concrete from the Hopper Suction Apparatus CSF. Procedia Engineering, 150, 2036–2041. doi: 10.1016/j.proeng.2016.07.290
- Chelnokov, A. A., Mironchik, A. F., Zhmyhov, I. N. (2016). Inzhenernye metody ohrany atmosfernogo vozduha. Minsk: Vysheyshaya shkola, 397.
- Thakare, H. R., Monde, A., Parekh, A. D. (2015). Experimental, computational and optimization studies of temperature separation and flow physics of vortex tube: A review. Renewable and Sustainable Energy Reviews, 52, 1043–1071. doi: 10.1016/j.energy.2015.03.058
- Volkov, K. N., Deryugin, Yu. N., Emel'yanov, V. N., Karpenko, A. G., Kozelkov, A. S., Teterina, I. V. (2014). Metody uskoreniya gazodinamicheskih raschetov na nestrukturirovannyh setkah– Moscow: FIZMATLIT, 536.
- Landau, L. D., Lifshits, E. M. (2013). Teoreticheskaya fizika. Vol. I. Moscow: «FIZMATLIT», 224.
- Molochko, F. I. (2015). O sushchnosti vihrevogo effekta Ranka-Hil'sha. Problemy obshchey energetiki, 4 (43), 58–60.
- Yahno, O. M., Matiega, V. M., Krivosheev, V. S. (2004). Gidrodinamicheskiy nachal'nyy uchastok. Chernovtsy, 145.
- Zuykov, A. L. (2014). Gidravlicheskoe modelirovanie kontrvihrevyh techeniy. Vestnik MGSU, 6, 114–125.
- Akhmetov, D. G., Akhmetov, T. D. (2015). Swirl flow in vortex chamber. Science Bulletin, 6 (4), 109–120. doi: 10.17117/nv.2015.04.109
- Frumin, V. M., Gut, V. M., Burin, V. L. et. al. (2016). Sposoby suhoy ochistki gaza kal'tsinatsyi ot sodovoy pyli. Himiya i tekhnologiya osnovnoy himicheskoy promyshlennosti, 78, 52−57.
- Gutsol, A. F. (1997). The Ranque effect. Uspekhi Fizicheskih Nauk, 167 (6), 665–687. doi: 10.3367/ufnr.0167.199706e.0665
- Shaporev, V. P., Pitak, I. V., Vasil'ev, M. I. (2015). To a question about the nature of the relationship of water to calcium hydroxide. Visnyk NTU «KhPI», 50 (1159), 121–127.
- Shaporev, V. P., Kogut, M. D. (1996). Priblizhennoe reshenie uravneniya koagulyatsyi s nekotorymi model'nymi yadrami. Ekologiya himicheskoy tekhniki i biotekhnologyi, 2, 73–77.
- Pitak, I. V. (2014). Study of experimental-industrial design of rotary vortex machine. Technology audit and production reserves, 3 (2 (17)), 33–38. doi: 10.15587/2312-8372.2014.26212
- Kolyadin, E. A. (2007). Vliyanie zakrutki potoka gazov na konvektivnyi teploobmen v utilizatsionnyh gazotrubnyh kotlah. Vestnik Astrahanskogo gosudarstvennogo tekhnicheskogo universiteta, 2 (37), 159–162.
- Bona, C., Palenzuela-Luque, C., Bona-Casas, C. (2009). Elements of Numerical Relativity and Relativistic Hydrodynamics. Lecture Notes in Physics. doi: 10.1007/978-3-642-01164-1
- Konovalov, V. I., Orlov, A. Yu., Gatapova, N. T. (2010). Sushka i drugie tekhnologicheskie protsessy s vihrevoy trubkoy Ranka-Hil'sha: vozmozhnosti i eksperimental'naya tekhnika. Estnik TGTU, 16 (4), 803–825.
- Bochkarev, V. V. (2016). Optimizatsiya himiko-tekhnologicheskih protsessov. Moscow: Yurayt, 263.
- Korkodinov, Ya. A., Hurmatullin, O. G. (2012). Primenenie effekta Ranka-Hil'sha. Vestnik Permskogo natsional'nogo issledovatel'skogo universiteta, 4, 42–53.
- Protopopov, R. Ya., Filenko, O. N., Shaporev, V. P. (2012). About reactor modeling for organic impurities thermal neutralization. Eastern-European Journal of Enterprise Technologies, 2 (12 (56)), 22–26. Available at: http://journals.uran.ua/eejet/article/view/3925/3593
- Protopopov, R. Ya. (2012). Analiz termichnoho metodu zneshkodzhennia hazovykh vykydiv vid orhanichnykh spoluk. Inovatsiini shliakhy modeliuvannia bazovykh haluzei promyslovosti, enerho- ta resursozberezhennia, okhorona navkolyshnoho seredovyshcha. Kharkiv: UkrHNTTs «Enerhostal», 379–386.
- Tovazhnyans'kiy, L. L., Pertsev, L. P., Shaporev, V. P. (2004). Teploenergetika pogruzhnogo goreniya v reshenyi problem teplosnabzheniya i ekologyi Ukrainy. Intehrovani tekhnolohii ta enerhozberezhennia, 3, 3–12.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Valery Shaporev, Inna Pitak, Oleg Pitak, Serhii Briankin
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.