Designing an automated complex based on a mini-CHP with recycling the flue gas to methanol

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.108572

Keywords:

co-generation, recycling of carbon dioxide, methanol production, oxygen production, electrical and thermal energy

Abstract

We developed a structure of the cogeneration plant (a four-generation plant), which, in addition to classic electrical and thermal energy, produces methanol and oxygen. A distinctive feature of the plant is that methanol production is based on the recycling of flue gas from a mini-CHP as a result of the catalytic technological process. Production of oxygen is an additional product during production of hydrogen required for the synthesis of methanol. Production of hydrogen and oxygen is carried out by the electrolysis of water. Electrical energy required for the electrolysis is supplied by a mini-CHP. We designed computer automation for all plants of the system that enable implementation of practically autonomous, unmanned operation of the system.

Computer simulation of the system and study of the system's operation, executed in the environment of a universal software for technological modeling based on the physical and chemical balances, allowed us to calculate parameters of all product and energy flows, to confirm the feasibility of all employed chemical reactions and the alignment of the system's functioning as a whole with the expected results. 

Author Biographies

Oleksandr Protsyshen, Odessa National Polytechnic University Shevchenko ave., 1, Odessa, Ukraine, 65044

Department of automation of power processes 

Oleksii Stopakevych, Odessa National Polytechnic University Shevchenko ave., 1, Odessa, Ukraine, 65044

PhD, Associate Professor

Department of automation of power processes 

Andrii Stopakevych, Odessa national O. S. Popov academy of telecommunications Kuznechna str., 1, Odessa, Ukraine, 65029

PhD, Associate Professor

Department of computer-integrated technological processes and industries

References

  1. Joshi, P. (2014). Carbone dioxide utilization: a comprehensive review. Int. J. Chem. Sci, 12 (4), 1208–1220.
  2. Stopakevych, A., Stopakevych, O., Tigariev, A. (2017). Development of computer–integrated systems for the automation of technological process of associated gas processing. Eastern-European Journal of Enterprise Technologies, 3 (2 (87)), 55–63. doi: 10.15587/1729-4061.2017.99060
  3. Directive 2001/80/EC of the European Parliament and of the Council of 23 October 2001 on the limitation of emissions of certain pollutants into the air from large combustion plants. Official Journal of the European Communities, 44 (L 309), 1–21.
  4. Dimitrov, A. (2017) Introduction to Energy Technologies for Efficient Power Generation. CRC Press: Boca Raton, 245.
  5. Pastushenko, V. S., Stopakevych, A. A., Stopakevych, A. A. (2016). Model predictive control of distillation column in the carbon dioxide recycling in methanol technological process. Technology Audit and Production Reserves, 6 (2 (32)), 36–40. doi: 10.15587/2312-8372.2016.85613
  6. Dolgov, A. (2013). Problemy ukrainskoy elektroenergetiki i “Energeticheskaya strategiya Ukrainy do 2030». Elektrik, 11, 18–22.
  7. Badami, M., Camillieri, F., Portoraro, A., Vigliani, E. (2014). Energetic and economic assessment of cogeneration plants: A comparative design and experimental condition study. Energy, 71, 255–262. doi: 10.1016/j.energy.2014.04.063
  8. Gilewski, J., Montusiewicz, J. (2014). Combined systems of energy generation – A characterization and classification. Advances in Science and Technology Research Journal, 8 (23), 53–61.
  9. Špaček, M., Hradílek, Z. (2016). Automation and Control of Energetic Systems Using Cogeneration Unit in Industry. Advances in Intelligent Systems and Computing, 471–479. doi: 10.1007/978-3-319-33816-3_46
  10. Compernolle, T., Witters, N., Van Passel, S., Thewys, T. (2011). Analyzing a self-managed CHP system for greenhouse cultivation as a profitable way to reduce CO2-emissions. Energy, 36 (4), 1940–1947. doi: 10.1016/j.energy.2010.02.045
  11. Goeppert, A., Czaun, M., Jones, J.-P., Surya Prakash, G. K., Olah, G. A. (2014). Recycling of carbon dioxide to methanol and derived products – closing the loop. Chem. Soc. Rev., 43 (23), 7995–8048. doi: 10.1039/c4cs00122b
  12. Pastushenko, V. S., Stopakevich, A. A., Stopakevich, A. A. (2016). Informatsionno-vychislitel'naya sistema proektirovaniya tehnologicheskogo protsessa utilizatsii uglekislogo gaza v metanol i sistemy ego avtomatizatsii. Vestnik HNU, 243 (6), 226–230.
  13. Dimitriou, I., García-Gutiérrez, P., Elder, R. H., Cuéllar-Franca, R. M., Azapagic, A., Allen, R. W. K. (2015). Carbon dioxide utilisation for production of transport fuels: process and economic analysis. Energy Environ. Sci., 8 (6), 1775–1789. doi: 10.1039/c4ee04117h
  14. Van-Dal, É. S., Bouallou, C. (2013). Design and simulation of a methanol production plant from CO2 hydrogenation. Journal of Cleaner Production, 57, 38–45. doi: 10.1016/j.jclepro.2013.06.008
  15. Holladay, J. D., Hu, J., King, D. L., Wang, Y. (2009). An overview of hydrogen production technologies. Catalysis Today, 139 (4), 244–260. doi: 10.1016/j.cattod.2008.08.039
  16. Marshall, A., Børresen, B., Hagen, G., Tsypkin, M., Tunold, R. (2007). Hydrogen production by advanced proton exchange membrane (PEM) water electrolysers –Reduced energy consumption by improved electrocatalysis. Energy, 32 (4), 431–436. doi: 10.1016/j.energy.2006.07.014
  17. Mignard, D. (2003). Methanol synthesis from flue-gas CO2 and renewable electricity: a feasibility study. International Journal of Hydrogen Energy, 28 (4), 455–464. doi: 10.1016/s0360-3199(02)00082-4
  18. Rao, K. N. M. (2015). HYSYS and Aspen Plus in process design: a practical approach. FRG: Lambert Academic Publisher, 380.
  19. Ekwonu, M. C., Perry, S., Oyedoh, E. A. (2013). Modelling and simulation of gas engines using Aspen HYSYS, 6 (3), 1–4.
  20. Øi, L. E. (2007) Aspen HYSYS simulation of CO2 removal by amine absorption from a gas based power plant. SIMS2007 – 48 Scandinavian conference on simulation and modeling, Gøteborg, 73–81.
  21. Koh, J., Yoon, D., Oh, C. H. (2010). Simple Electrolyzer Model Development for High-Temperature Electrolysis System Analysis Using Solid Oxide Electrolysis Cell. Journal of Nuclear Science and Technology, 47 (7), 599–607. doi: 10.3327/jnst.47.599
  22. Kiyanov, N., Kryukov, O., Lopatnikov, S., Smirnov, A., Pribytkov, D. (2007). Proekty avtomatizatsii ventilyatornyh gradiren. Sovremennye tehnologii avtomatizatsii, 2, 64–70.

Downloads

Published

2017-08-24

How to Cite

Protsyshen, O., Stopakevych, O., & Stopakevych, A. (2017). Designing an automated complex based on a mini-CHP with recycling the flue gas to methanol. Eastern-European Journal of Enterprise Technologies, 4(2 (88), 61–67. https://doi.org/10.15587/1729-4061.2017.108572