The properties investigation of the faradaic supercapacitor electrode formed on foamed nickel substrate with polyvinyl alcohol using

Authors

  • Valerii Kotok Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 Federal State Educational Institution of Higher Education "Vyatka State University" Moskovskaya str., 36, Kirov, Russian Federation, 610000, Ukraine https://orcid.org/0000-0001-8879-7189
  • Vadym Kovalenko Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 Federal State Educational Institution of Higher Education "Vyatka State University" Moskovskaya str., 36, Kirov, Russian Federation, 610000, Ukraine https://orcid.org/0000-0002-8012-6732

DOI:

https://doi.org/10.15587/1729-4061.2017.108839

Keywords:

nickel hydroxide, Ni(OH)2, supercapacitor, electrodeposition, cathodic template synthesis, polyvinyl alcohol, discharge capacity

Abstract

The electrode materials for positive electrodes of hybrid supercapacitors were deposited on the nickel foam substrate using cathodic template method. It has been demonstrated that prepared materials are composed of polyvinyl alcohol and X-ray amorphous α-like nickel hydroxide with a large number of lattice defects, that have a flat morphology with a grid of cracks. The optimal deposition times were found to be 10 and 20 minutes. It has also been demonstrated that the greatest effect on the capacity of nickel foam substrates was caused by the treatment itself and to not by its duration or polarization with the cathodic current. It has been demonstrated that with such deposition method, the resulting capacity is constituted by two components – the capacity of PVA-Ni(OH)2 composite material and capacity of the nickel foam substrate. The maximum specific capacity obtained at a current density of 320 mA/cm2 is 2.26 F/cm2. The maximum substrate capacity was achieved after treatment with KNO3 solution for 10 minutes and is 1.58 F/cm2 at a current density of 160 mA/cm2

Author Biographies

Valerii Kotok, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 Federal State Educational Institution of Higher Education "Vyatka State University" Moskovskaya str., 36, Kirov, Russian Federation, 610000

PhD, Associate Professor

Department of Processes, Apparatus and General Chemical Technology

Department of Technologies of Inorganic Substances and Electrochemical Manufacturing

Vadym Kovalenko, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 Federal State Educational Institution of Higher Education "Vyatka State University" Moskovskaya str., 36, Kirov, Russian Federation, 610000

PhD, Associate Professor

Department of Analytical Chemistry and Food Additives and Cosmetics

Department of Technologies of Inorganic Substances and Electrochemical Manufacturing

References

  1. Кovalenko, V., Kotok, V., Bolotin, O. (2016). Definition of factors influencing on Ni(OH)2 electrochemical characteristics for supercapacitors. Eastern-European Journal of Enterprise Technologies, 5 (6 (83)), 17–22. doi: 10.15587/1729-4061.2016.79406
  2. Kovalenko, V. L., Kotok, V. A., Sykchin, A. A., Mudryi, I. A., Ananchenko, B. A., Burkov, A. A. et. al. (2016). Nickel hydroxide obtained by high-temperature two-step synthesis as an effective material for supercapacitor applications. Journal of Solid State Electrochemistry, 21 (3), 683–691. doi: 10.1007/s10008-016-3405-2
  3. Solovov, V., Кovalenko, V., Nikolenko, N., Kotok, V., Vlasova, E. (2017). Influence of temperature on the characteristics of Ni(II), Ti(IV) layered double hydroxides synthesised by different methods. Eastern-European Journal of Enterprise Technologies, 1 (6 (85)), 16–22. doi: 10.15587/1729-4061.2017.90873
  4. Miao, F., Tao, B., Chu, P. K. (2015). Ordered-standing nickel hydroxide microchannel arrays: Synthesis and application for highly sensitive non-enzymatic glucose sensors. Microelectronic Engineering, 133, 11–15. doi: 10.1016/j.mee.2014.11.005
  5. Kotok, V., Kovalenko, V. (2017). The electrochemical cathodic template synthesis of nickel hydroxide thin films for electrochromic devices: role of temperature. Eastern-European Journal of Enterprise Technologies, 2 (11 (86)), 28–34. doi: 10.15587/1729-4061.2017.97371
  6. Kotok, V., Kovalenko, V. (2017). Electrochromism of Ni(OH)2 films obtained by cathode template method with addition of Al, Zn, Co ions. Eastern-European Journal of Enterprise Technologies, 3 (12 (87)), 38–43. doi: 10.15587/1729-4061.2017.103010
  7. Ranganathan, P., Sasikumar, R., Chen, S.-M., Rwei, S.-P., Sireesha, P. (2017). Enhanced photovoltaic performance of dye-sensitized solar cells based on nickel oxide supported on nitrogen-doped graphene nanocomposite as a photoanode. Journal of Colloid and Interface Science, 504, 570–578. doi: 10.1016/j.jcis.2017.06.012
  8. Huo, J., Tu, Y., Zheng, M., Wu, J. (2017). Fabrication a thin nickel oxide layer on photoanodes for control of charge recombination in dye-sensitized solar cells. Journal of Solid State Electrochemistry, 21 (6), 1523–1531. doi: 10.1007/s10008-017-3515-5
  9. Malara, F., Carallo, S., Rotunno, E., Lazzarini, L., Piperopoulos, E., Milone, C., Naldoni, A. (2017). A Flexible Electrode Based on Al-Doped Nickel Hydroxide Wrapped around a Carbon Nanotube Forest for Efficient Oxygen Evolution. ACS Catalysis, 7 (7), 4786–4795. doi: 10.1021/acscatal.7b01188
  10. Qiu, C., Liu, D., Jin, K., Fang, L., Sha, T. (2017). Corrosion resistance and micro-tribological properties of nickel hydroxide-graphene oxide composite coating. Diamond and Related Materials, 76, 150–156. doi: 10.1016/j.diamond.2017.04.015
  11. Hall, D. S., Lockwood, D. J., Bock, C., MacDougall, B. R. (2014). Nickel hydroxides and related materials: a review of their structures, synthesis and properties. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 471 (2174), 20140792–20140792. doi: 10.1098/rspa.2014.0792
  12. Vidotti, M., Torresi, R., Torresi, S. I. C. de. (2010). Eletrodos modificados por hidróxido de níquel: um estudo de revisão sobre suas propriedades estruturais e eletroquímicas visando suas aplicações em eletrocatálise, eletrocromismo e baterias secundárias. Química Nova, 33 (10), 2176–2186. doi: 10.1590/s0100-40422010001000030
  13. Yan-wei, L., Chang-jiu, L., Jin-huan, Y. (2010) Progress in research on amorphous nickel hydroxide electrode materials. Xiandai Huagong/Modern Chemical Industry, 30 (2), 25–27.
  14. Feng, L., Zhu, Y., Ding, H., Ni, C. (2014). Recent progress in nickel based materials for high performance pseudocapacitor electrodes. Journal of Power Sources, 267, 430–444. doi: 10.1016/j.jpowsour.2014.05.092
  15. Kotok, V. A., Kovalenko, V. L., Kovalenko, P. V., Solovov, V. A., Deabate, S., Mehdi, A., Bantignies, J. L., Henn, F. (2017) Advanced electrochromic Ni(OH)2/PVA films formed by electrochemical template synthesis. ARPN Journal of Engineering and Applied Sciences, 12 (13), 3962–3977.
  16. Vlasova, E., Кovalenko, V., Kotok, V., Vlasov, S. (2016). Research of the mechanism of formation and properties of tripolyphosphate coating on the steel basis. Eastern-European Journal of Enterprise Technologies, 5 (5 (83)), 33–39. doi: 10.15587/1729-4061.2016.79559
  17. Burmistr, M. V., Boiko, V. S., Lipko, E. O., Gerasimenko, K. O., Gomza, Y. P., Vesnin, R. L. et. al. (2014). Antifriction and Construction Materials Based on Modified Phenol-Formaldehyde Resins Reinforced with Mineral and Synthetic Fibrous Fillers. Mechanics of Composite Materials, 50 (2), 213–222. doi: 10.1007/s11029-014-9408-0
  18. Kotok, V., Кovalenko, V. (2017). Optimization of nickel hydroxide electrode of the hybrid supercapacitor. Eastern-European Journal of Enterprise Technologies, 1 (6 (85)), 4–9. doi: 10.15587/1729-4061.2017.90810
  19. Wu, F., Li, W., Chen, L., Lu, Y., Su, Y., Bao, W. et. al. (2017). Polyacrylonitrile-polyvinylidene fluoride as high-performance composite binder for layered Li-rich oxides. Journal of Power Sources, 359, 226–233. doi: 10.1016/j.jpowsour.2017.05.063
  20. Lacey, M. J., Österlund, V., Bergfelt, A., Jeschull, F., Bowden, T., Brandell, D. (2017). A Robust, Water-Based, Functional Binder Framework for High-Energy Lithium-Sulfur Batteries. ChemSusChem, 10 (13), 2758–2766. doi: 10.1002/cssc.201700743
  21. Pawar, P. B., Shukla, S., Saxena, S. (2016). Graphene oxide – Polyvinyl alcohol nanocomposite based electrode material for supercapacitors. Journal of Power Sources, 321, 102–105. doi: 10.1016/j.jpowsour.2016.04.127
  22. Shinde, S. K., Fulari, V. J., Kim, D.-Y., Maile, N. C., Koli, R. R., Dhaygude, H. D., Ghodake, G. S. (2017). Chemical synthesis of flower-like hybrid Cu(OH)/CuO electrode: Application of polyvinyl alcohol and triton X-100 to enhance supercapacitor performance. Colloids and Surfaces B: Biointerfaces, 156, 165–174.
  23. Hu, R., Zhao, J., Jiang, R., Zheng, J. (2017). Preparation of high strain polyaniline/polyvinyl alcohol composite and its applications in stretchable supercapacitor. Journal of Materials Science: Materials in Electronics. doi: 10.1007/s10854-017-7320-9
  24. Xie, Y., Zhu, F. (2017). Electrochemical capacitance performance of polyaniline/tin oxide nanorod array for supercapacitor. Journal of Solid State Electrochemistry, 21 (6), 1675–1685. doi: 10.1007/s10008-017-3525-3
  25. Zhu, Q., Liu, K., Zhou, J., Hu, H., Chen, W., Yu, Y. (2017). Design of a unique 3D-nanostructure to make MnO2 work as supercapacitor material in acid environment. Chemical Engineering Journal, 321, 554–563. doi: 10.1016/j.cej.2017.03.147
  26. Tong, M., Liu, S., Zhang, X., Wu, T., Zhang, H., Wang, G. et. al. (2017). Two-dimensional CoNi nanoparticles@S,N-doped carbon composites derived from S,N-containing Co/Ni MOFs for high performance supercapacitors. J. Mater. Chem. A, 5 (20), 9873–9881. doi: 10.1039/c7ta01008g
  27. Ataherian, F., Wu, N.-L. (2011). Long-Term Charge/Discharge Cycling Stability of MnO2 Aqueous Supercapacitor under Positive Polarization. Journal of The Electrochemical Society, 158 (4), A422. doi: 10.1149/1.3555469
  28. Pan, G.-T., Chong, S., Yang, T., Huang, C.-M. (2017). Electrodeposited Porous Mn1.5Co1.5O4/Ni Composite Electrodes for High-Voltage Asymmetric Supercapacitors. Materials, 10 (4), 370. doi: 10.3390/ma10040370
  29. Zheng, J., Lin, J., Chu, R., Wu, C., Zhang, J., Chen, Y. et. al. (2017). ZnO nanoparticles anchored on nickel foam with graphene as morphology-controlling agent for high-performance lithium-ion battery anodes. Journal of Applied Electrochemistry, 47 (8), 969–978. doi: 10.1007/s10800-017-1094-x
  30. Chai, L., Qu, Q., Zhang, L., Shen, M., Zhang, L., Zheng, H. (2013). Chitosan, a new and environmental benign electrode binder for use with graphite anode in lithium-ion batteries. Electrochimica Acta, 105, 378–383. doi: 10.1016/j.electacta.2013.05.009
  31. Lin, C.-T., Huang, T.-Y., Huang, J.-J., Wu, N.-L., Leung, M. (2016). Multifunctional co-poly(amic acid): A new binder for Si-based micro-composite anode of lithium-ion battery. Journal of Power Sources, 330, 246–252. doi: 10.1016/j.jpowsour.2016.09.021

Downloads

Published

2017-08-29

How to Cite

Kotok, V., & Kovalenko, V. (2017). The properties investigation of the faradaic supercapacitor electrode formed on foamed nickel substrate with polyvinyl alcohol using. Eastern-European Journal of Enterprise Technologies, 4(12 (88), 31–37. https://doi.org/10.15587/1729-4061.2017.108839

Issue

Section

Materials Science