Automatization of individual anti-thermal protection of rescuers in the initial period of fire suppression

Authors

  • Victor Kostenko State Higher Education Establishment «Donetsk National Technical University» Shybankova sq., 2, Pokrovsk, Ukraine, 85300, Ukraine https://orcid.org/0000-0001-8439-6564
  • Tatyana Kostenko Cherkasy Institute of Fire Safety named after Chornobyl Heroes of National University of Civil Defense of Ukraine Onoprienko str., 8, Cherkasy, Ukraine, 18034, Ukraine https://orcid.org/0000-0001-9426-8320
  • Oleh Zemlianskiy Cherkasy Institute of Fire Safety named after Chornobyl Heroes of National University of Civil Defense of Ukraine Onoprienko str., 8, Cherkasy, Ukraine, 18034, Ukraine https://orcid.org/0000-0002-2728-6972
  • Artem Maiboroda Cherkasy Institute of Fire Safety named after Chornobyl Heroes of National University of Civil Defense of Ukraine Onoprienko str., 8, Cherkasy, Ukraine, 18034, Ukraine https://orcid.org/0000-0001-6108-9772
  • Stanislav Kutsenko Cherkasy Institute of Fire Safety named after Chornobyl Heroes of National University of Civil Defense of Ukraine Onoprienko str., 8, Cherkasy, Ukraine, 18034, Ukraine https://orcid.org/0000-0002-1846-1249

DOI:

https://doi.org/10.15587/1729-4061.2017.109484

Keywords:

automated autonomous thermoprotective device, protective clothing of firefighter, cooling of firefighter’s body

Abstract

The problem of protection of rescuers from thermal injuries at the initial stage of fire suppression was explored.

The authors substantiated structural components of the autonomous device for individual protection of rescuers from thermal injuries at the initial stage of emergency elimination, mainly during the site reconnaissance, when means of fire suppression and thermal protection of rescuers are not deployed yet. The automatic autonomous thermoprotective device, the structural system of which contains hydraulic and automatic parts, was proposed. The hydraulic part includes: the tank, pipelines for feeding a cooling agent, the atomizer, and the shutter of the electromagnetic valve. The tank is filled with the cooling agent under pressure. The shutter of the valve is located on the neck of the tank and in the initial state overlaps the pipeline. The atomizer is fixed on a rescuer’s helmet. The automatic part of the device consists of the control unit with the autonomous battery, located in the under-clothing space, the temperature sensor and the driving part of the electromagnetic valve.

The model and the model sample of the autonomous thermoprotective device were tested under laboratory conditions. Testing results demonstrated workability of the proposed technical solution and possibility of operation in automatic mode. Effectiveness of cooling the rescuer’s body by periodic sprinkling of the surface of special protective clothing was proved. The device timely reacted to the temperature change in the under-clothing space and automatically cooled down the surface of special firefighter clothing within five seconds. Pulse mode of device operation provides economical consumption of a cooling agent and an increase in the duration of rescuer’s protection from thermal injuries.

External sprinkling for the purpose of cooling helps counteract thermal destruction of fabric of the special clothes for firefighters and increase their operation term

Author Biographies

Victor Kostenko, State Higher Education Establishment «Donetsk National Technical University» Shybankova sq., 2, Pokrovsk, Ukraine, 85300

Doctor of technical sciences, Professor, Head of Department

Department of environmental protection

Tatyana Kostenko, Cherkasy Institute of Fire Safety named after Chornobyl Heroes of National University of Civil Defense of Ukraine Onoprienko str., 8, Cherkasy, Ukraine, 18034

PhD, Associate Professor

Department of automatic safety systems and electrical installations

Oleh Zemlianskiy, Cherkasy Institute of Fire Safety named after Chornobyl Heroes of National University of Civil Defense of Ukraine Onoprienko str., 8, Cherkasy, Ukraine, 18034

PhD, Associate Professor

Department of automatic safety systems and electrical installations

Artem Maiboroda, Cherkasy Institute of Fire Safety named after Chornobyl Heroes of National University of Civil Defense of Ukraine Onoprienko str., 8, Cherkasy, Ukraine, 18034

PhD, Associate Professor

Department of automatic safety systems and electrical installations

Stanislav Kutsenko, Cherkasy Institute of Fire Safety named after Chornobyl Heroes of National University of Civil Defense of Ukraine Onoprienko str., 8, Cherkasy, Ukraine, 18034

PhD, Associate Professor, Head of Department

Department of automatic safety systems and electrical installations

References

  1. Analiz masyvu kartok obliku pozhezh (pog_stat) za 12 misiatsiv 2016 roku (2017). UkrNDITsZ DSNS Ukrainy, 37. Available at: http://undicz.dsns.gov.ua/files/2017/2/2/AD_12_2016.pdf
  2. Brushlinsky, N., Ahrens, M., Sokolov, S., Wagner, P. (2017). World Fire Statistics. International Association of Fire and Rescue Services. Center of Fire Statistics, 22, 1–56. Available at: http://www.ctif.org/sites/default/files/ctif_report22_world_fire_statistics_2017.pdf
  3. Kostenko, T. V. (2015). Mozhlyvosti zakhystu riatuvalnykiv vid teplovoho vplyvu. Pozhezhna bezpeka: teoriia i praktyka, 20, 53–60.
  4. Kostenko, T. V. (2016). Povyshenie bezopasnosti i takticheskih vozmozhnostey spasateley pri likvidacii pozharov s vysokim teplovydeleniem. Visnyk Pryazovskoho derzhavnoho tekhnichnoho universytetu. Seriya: Tekhnichni nauky, 33, 198–205.
  5. Lutsenko, Yu. V., Vasyliev, O. B., Yarovyi, Ye. A. (2013). Teoretychne obgruntuvannia vzaiemozviazkiv parametriv pry proektuvanni termozakhysnoho odiahu. Problemy pozharnoy bezopasnosti, 34, 120–125.
  6. Lutsenko, Yu. V., Vasyliev, O. B., Yarovyi, Ye. A. (2015). Vyznachennia ratsionalnoho rozpodilu teploznimannia dlia liudei, shcho znakhodiatsia v termozakhysnomu spetsialnomu odiazi v umovakh vysokykh temperatur. Problemy pozharnoy bezopasnosti, 38, 111–113.
  7. Kostenko, V. K., Zavialova, O. L., Kostenko, T. V., Zhurbinskyi, D. A. (2016). Obgruntuvannia vyboru materialiv dlia vyhotovlennia spetsialnoho zakhysnoho odiahu riatuvalnykiv vid pidvyshchenoho teplovoho vplyvu. Visti Donetskoho hirnychoho instytutu, 2, 87–97.
  8. Stull, J. O. (2000). Comparative Thermal Insulative Performance of Reinforced Knee Areas of Firefighter Protective Clothing. Performance of Protective Clothing: Issues and Priorities for the 21, 312‑312-17. doi: 10.1520/stp14454s
  9. Mandal, S., Song, G. (2016). Characterizing thermal protective fabrics of firefighters clothing in hot surface contact. Journal of Industrial Textiles. doi: 10.1177/1528083716667258
  10. McQuerry, M., DenHartog, E., Barker, R. (2016). Evaluating turnout composite layering strategies for reducing thermal burden in structural firefighter protective clothing systems. Textile Research Journal, 87 (10), 1217–1225. doi: 10.1177/0040517516651101
  11. Zhang, H., Song, G., Ren, H., Cao, J. (2017). The effects of moisture on the thermal protective performance of firefighter protective clothing under medium intensity radiant exposure. Textile Research Journal, 004051751769062. doi: 10.1177/0040517517690620
  12. Li, J., Tian, M. (2016). Personal thermal protection simulation under diverse wind speeds based on life-size manikin exposed to flash fire. Applied Thermal Engineering, 103, 1381–1389. doi: 10.1016/j.applthermaleng.2016.04.155
  13. Horn, G. P., Chaussidon, J., Obstalecki, M., Martin, D. A., Kurath, P., Backstrom, R. G., Kerber, S. (2013). Evaluating Fire Service Escape Ropes at Elevated Temperatures and Fire Conditions. Fire Technology, 51 (1), 153–171. doi: 10.1007/s10694-013-0373-2
  14. Walker, A., Driller, M., Brearley, M., Argus, C., Rattray, B. (2014). Cold-water immersion and iced-slush ingestion are effective at cooling firefighters following a simulated search and rescue task in a hot environment. Applied Physiology, Nutrition, and Metabolism, 39 (10), 1159–1166. doi: 10.1139/apnm-2014-0038
  15. Viking life-saving equipment A/S. Available at: http://www.viking-life.com
  16. Dräger Bodyguard 1000. Available at: https://www.draeger.com/ru_ru/Home
  17. Olau, T. (2010). Sensoren in Textilien warnen die Feuerwehr. VDI-Nachr, 50-52, 15.
  18. Kostenko, V. K., Pokaliuk, V. M., Maiboroda, A. O. et. al. (2017). Zakhyst riatuvalnykiv vid vplyvu tepla. Cherkasy: ChIPB im. Heroiv Chornobylia NUTsZ Ukrainy, 145.
  19. Kostenko, V. K., Zavialova, O. L., Zavialov, H. V., Kostenko, T. V., Pokaliuk, V. M. (2016). Pat. No. 109668 UA. Teplozakhysnyi kostium. MPK A62 V17/00, A41D13/00. No. u201603119; declareted: 25.03.2016; published: 25.08.2016, Bul. No. 16.
  20. Kostenko, V. K., Kostenko, T. V., Pokaliuk, V. M., Maiboroda, A. O., Nuianzin, O. M., Nesterenko, A. A. (2016). Pat. No. 114109 UA. Okholodzhuiuchyi prystriy teplozakhysnykh kostiumiv. MPK A62 V17/00, A41D 13/002. No. u201609849; declareted: 26.09.2016; published: 10.04.2017, Bul. No. 7.

Downloads

Published

2017-10-24

How to Cite

Kostenko, V., Kostenko, T., Zemlianskiy, O., Maiboroda, A., & Kutsenko, S. (2017). Automatization of individual anti-thermal protection of rescuers in the initial period of fire suppression. Eastern-European Journal of Enterprise Technologies, 5(10 (89), 4–11. https://doi.org/10.15587/1729-4061.2017.109484