Development of the analytical method for determining the armor wear of the drum ball mill

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.109629

Keywords:

analytical method, steam boiler, drum ball mill, coal, drum armor wear rate, ball wear rate, mill operation duration, ball charge

Abstract

The object of the research to develop an analytical method for determining the armor wear rate of the drum ball mill was the boiler TP-100 (TP-100A) of the 200 MW power unit of Burshtyn TPP (Ukraine), equipped with two individual dust-preparation systems with drum ball mills KBM 370/850 (Sh-50A).

An effective analytical method for determining one of the main performance indicators of a drum ball mill – the wear rate of the drum armor, grinding balls and the relationship between them in case of «G» grade coal combustion for TP-100 boilers is proposed. Its essence is to reduce human labor costs, more accurately determine the wear rate of the drum armor and grinding balls. This method is characterized by the fact that the main estimation indicator is the drum armor wear rate depending on the manufacture quality of armored plates (manufacturer).

According to experimental studies, the ratio of the armor wear rate of the drum, equipped with a sleeper armor, to the wear rate of grinding balls is a constant value of 0.07. The statistics of the interrepair time of Burshtyn TPP mills, depending on the armor grade, are summarized in the table. The experimental and estimated parameters of the drum armor wear of Burshtyn TPP KBM are given.

The influence of the armor grade, provided the maximum allowable drum armor wear (bδ=0.5) on the estimated maximum drum ball charge and the mill operation duration is investigated.

The dependency of over-expenditure of balls on the mill operation duration and the place of armor manufacture is given. The equations describing the curves of this dependency are derived. According to the dependency Nm=f(Gb), the mill electric motor loading in case of the actual ball weight of 70 t in the drum is determined.

The recommendations for diagnosing the operation of drum ball mills using different fuels, with the corresponding calculations and equipment, are given

Author Biographies

Yevhen Pistun, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

Doctor of Technical Sciences, Professor, Нead of Department

Department of Automation of Thermal and Chemical Processes

Stepan Mysak, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

Postgraduate student

Department of Automation of Thermal and Chemical Processes

Tetiana Kovalenko, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

PhD, Senior Lecturer

Department of Heat Engineering and Thermal and Nuclear Power Plants

Stepan Lys, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

PhD, Senior Lecturer

Department of Heat Engineering, Thermal and Nuclear Power Plants

Institute of Engineering and Systems Management

References

  1. Maisterenko, O. Yu., Topal, O. I., Haponych, L. S. (2009). Suchasnyi stan vuhilnoi enerhetyky Ukrainy ta perspektyvy yii onovlennia ta rozvytku. Naukovi pratsi NUKhT, 32, 43–47.
  2. Stohniy, O. V., Makarov, V. M., Kaplin, M. I. (2011). Potentsial vydobutku vuhillia v Ukraini. Problemy zahalnoi enerhetyky, 2 (25), 11–16.
  3. Shavlanov, O. (2016). Problemy formuvannia prohnoznoho balansu elektroenerhyi. Enerhoatom Ukrainy, 1 (42), 10–12.
  4. Chernyavsky, N. V. (1998). Two-Stages Principle in Entrainec Flow Coal Gasification: Mechanisms, Experimental Results, Advantages and Disadvantages for IGCC Application. 3-rd Int. CUSTNET Conf. on Coal Utilis. Sci. and Techn. Bucharest, 44.
  5. Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on industrial emissions (integrated poluttion prevention and control) (Recast) (2010). Eur-lex, L 334/17.
  6. Jaasund, S. A. (1987). Electrostatic Precipitator: Better Wet than Dry. Chemical Engineering, 159–163.
  7. Integrated Pollution Prevention and Control (IPPC) Reference Document on Best Available Techniques for Large Combustion Plants (2006). European Commission, 618.
  8. Maysterenko, A. Yu., Chernyavskiy, N. V. (2011). Vliyanie kachestva uglya na efektivnost' ego pilevidnogo szhiganiya na TES Ukrainy. Energohazyaystvo za rubezhem, 5, 23–28.
  9. Breault, R. W. (2010). Gasification Processes Old and New: A Basic Review of the Major Technologies. Energies, 3 (2), 216–240. doi: 10.3390/en3020216
  10. Basu, P., Acharya, B., Dutra, A. (2009). Gasification in Fluidized Beds – Present Status & Design. Proceedings of the 20th International Conference on Fluidized Bed Combustion, 97–103. doi: 10.1007/978-3-642-02682-9_9
  11. Zhovtyansky, V. et. al. (2013). Technique for Evaluation of an Increase of Hydrogen Yield in Plasma-Steam Reactor for Conversion of Wood Air Gasification Products. Proceedings of Abstracts for Hydrogen Energy, 137, 83–84.
  12. Zhovtyansky, V. et. al. (2011). Hydrogen Rich Gas Generation Using Plasma Steam Gasification of Ukranian Anthracite and Brown Coal. Proceedings of International Conference of Hydrogen Production ICH2P–11. Thessaloniki, 1–9.
  13. SOU-N.EE 10.121:2008. Normy vytrat nul dlia vuhlerozmolnykh mlyniv kulovykh barabannykh na rozmel antratsytu kamianoho ta buroho vuhillia (2008). Kyiv: OEP “Hrifre”, 21.
  14. Levit, G. T. (1997). Pyleprigotovlenie na teplovyh elektrostanciyah. Moscow: Energoatomizdat, 384.
  15. Levit, G. T. (2000). Optimizaciya upravleniya topochnym rezhimom parovyh kotlov osnashchennyh mel'nicami-ventilyatorami. Teploenergetika, 8, 43–46.
  16. Levit, G. T. (2015). Nekotorye rekomendacii po povysheniyu vzryvo bezopasnosti pylosistem. Energetik, 11, 66–67.
  17. Holyshev, L. V., Kozemko, O. M., Mysak, Y. S. (2011). Pat. No. 99219 UA. Sposib vyznachennia produktyvnosti kulovoho barabannoho mlyna. MPK: G01F 3/00, B02C 25/00. No. a201106786; declareted: 30.05.2011; published: 25.07.2012, Bul. No. 14, 4. Available at: http://uapatents.com/4-99219-sposib-viznachennya-produktivnosti-kulovogo-barabannogo-mlina.html
  18. Holyshev, L. V., Mysak, Y. S., Omelianovskyi, P. Y., Savoliuk, D. P. (2007). Metod vyznachennia tempu znoshennia kul mlyna typu ShBM. Enerhetyka ta elektrofikatsiya, 10, 18–21.
  19. Holyshev, L. V., Mysak, Y. S., Omelianovskyi, P. Y., Kolesnikov, S. I. (2009). Vyznachennia pokaznykiv znoshennia broni mlyna typu ShBM u razi rozmeliuvannia vuhillia marky ASh. Enerhetyka ta elektrofikatsiya, 10, 38–43.
  20. DSTU 3472:2015. Vuhillia bure, kamiane ta antratsyt. Klasyfikatsiya (2015). Kyiv: DP «UkrNDNTs», 17.

Downloads

Published

2017-10-24

How to Cite

Pistun, Y., Mysak, S., Kovalenko, T., & Lys, S. (2017). Development of the analytical method for determining the armor wear of the drum ball mill. Eastern-European Journal of Enterprise Technologies, 5(1 (89), 45–50. https://doi.org/10.15587/1729-4061.2017.109629

Issue

Section

Engineering technological systems