Deriving a function of the bending axis of a profiled wall in the form of orthotropic plate

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.109687

Keywords:

steel beam, profiled wall, box cross section, calculation technique, orthotropic plate

Abstract

New approaches to calculation of a profiled wall of the proposed beam of box cross section were formulated. A profiled wall of the beam was presented as an orthotropic plate and specifics of its work were taken into account. In calculations of a profiled wall, the actual deformed scheme was changed for the equivalent one. The accepted system at simplification works under load similarly to the original system and has similar characteristics. Power or parabolic displacement function depends on parameters of a corrugated wall (ordinates of a point on the height of the wall, the number of half-waves of stability loss). Solution to a fourth-order equation using the MatCAD computer complex was found. The result of solution to the differential equation is an original displacement function for a generalized model of the wall of a beam with a profiled wall of box cross section of trapezoidal outline. The displacements found allow obtaining values of stresses in the cross section of new structural forms of beams. The paper considers analytical dependence of the coefficient, obtained as a result of calculation, which represents the power of the argument of function of deformation of the middle beam’s axis on applied load. The function of square parabola was found to reliably correspond to a change in transverse deformations by height of the wall, which is proved by calculations using the method of finite elements.

We present the possibility of using the resulting dependence for determining the stressed-strained state of the wall of a new structure of the beam with a profiled wall of the box cross section. The results, obtained by a mathematical algorithm of diagram of normal stresses, were graphically compared with traditional calculation. The feasibility of application of the presented methodological approach for beams with a profiled wall was proved because distribution of normal stresses by the traditional calculation method does not correspond to actual work of the wall. According to comparison of results of the conducted trial experiment with the presented method, the bending moment is accepted by flanges and sections of the wall, which are close to the flanges of the developed beams within (0.1÷0.2) hw

Author Biographies

Viktor Chichulin, Poltava National Technical Yuri Kondratyuk University Pershotravneviy ave., 24, Poltava, Ukraine, 36011

PhD, Associate Professor

Department of constructions is from a metal, tree and plastics 

Kseniia Chichulina, Poltava National Technical Yuri Kondratyuk University Pershotravneviy ave., 24, Poltava, Ukraine, 36011

PhD, Associate Professor

Department of Enterprise Economics and Leadership

References

  1. Pichuhin, S. F., Chychulin, V. P., Chychulina, K. V. (2009). Pat. No. 45328 UA. Staleva balka z poperechno profilovanoiu stinkoiu korobchastoho pererizu z nerivnomirnym krokom hofriv. MPK (2006), E 04 S 3/02. No. u200903785; declareted: 17.04.2009; published: 10.11.2009, Bul. No. 21, 4.
  2. Pichuhin, S. F., Chychulin, V. P., Chychulina, K. V. (2013). Rozvytok konstruktyvnykh rishen stalevykh balok z hofrovanoiu stinkoiu. Zbirnyk naukovykh prats. UkrNDIproektstalkonstruktsii im. V. M. Shymanovskoho, 12, 18–25.
  3. Timoshenko, S., Yung, D. (1960). Inzhenernaya mekhanika. Moscow: Mashgiz, 507.
  4. Gumenyuk, V. S. (1956). Priblizhennyy raschet ortotropnyh plastinok. Kyiv, 69–80.
  5. Gevorkyan, G. Z., Kirakosyan, R. M. (2007). K geometricheski nelineynoy utochnennoy teorii ortotropnyh plastin peremennoy tolshchiny. Izvestiya nacional'noy akademii nauk Armenii, 60 (4), 43–52.
  6. Ugrimov, S. V., Shupikov, A. N. (2010). Modelirovanie nizkoskorostnogo udara po sloistym ortotropnym plastinam. Obobshchennaya teoriya. Visnyk NTU „KhPI”, 69, 155–164.
  7. Darya zadeh, S., Lvov, G. I., Daryazadeh, P. (2014). A New Numerical Method for Calculation of Micro- Stress on Unidirectionally Reinforced Plates with Circular Hole In Case of Extension to a Principal Direction. Journal of Science and Engineering, 5 (1), 24–33.
  8. Tumino, D., Ingrassia, T., Nigrelli, V., Pitarresi, G., Urso Miano, V. (2014). Mechanical behavior of a sandwich with corrugated GRP core: numerical modeling and experimental validation. Frattura ed Integrità Strutturale, 30 (8), 317–326.
  9. Rejab, M. R. M., Cantwell, W. J. (2013). The mechanical behaviour of corrugated-core sandwich panels. Composites Part B: Engineering, 47, 267–277. doi: 10.1016/j.compositesb.2012.10.031
  10. Ungureanu, V., Dubina, D. (2016). Influence of Corrugation Depth on Lateral Stability of Cold-Formed Steel Beams of Corrugated Webs. Acta Mechanica et Automatica, 10 (2). doi: 10.1515/ama-2016-0017
  11. Moon, J., Lim, N.-H., Lee, H.-E. (2013). Moment gradient correction factor and inelastic flexural–torsional buckling of I-girder with corrugated steel webs. Thin-Walled Structures, 62, 18–27. doi: 10.1016/j.tws.2012.07.023
  12. Papangelis, J., Trahair, N., Hancock, G. (2017). Direct strength method for shear capacity of beams with corrugated webs. Journal of Constructional Steel Research, 137, 152–160. doi: 10.1016/j.jcsr.2017.06.007
  13. Moga, C., Guţiu, Ş. I., Danciu, A. D. (2017). Material Consumption Reduction by Using Steel Girders with Corrugated Webs. Procedia Engineering, 181, 234–241. doi: 10.1016/j.proeng.2017.02.384
  14. Kövesdi, B., Jáger, B., Dunai, L. (2016). Bending and shear interaction behavior of girders with trapezoidally corrugated webs. Journal of Constructional Steel Research, 121, 383–397. doi: 10.1016/j.jcsr.2016.03.002
  15. Jáger, B., Dunai, L., Kövesdi, B. (2015). Girders with trapezoidally corrugated webs subjected by combination of bending, shear and path loading. Thin-Walled Structures, 96, 227–239. doi: 10.1016/j.tws.2015.08.015
  16. Correia Lopes, G., Couto, C., Vila Real, P., Lopes, N. (2017). Elastic critical moment of beams with sinusoidally corrugated webs. Journal of Constructional Steel Research, 129, 185–194. doi: 10.1016/j.jcsr.2016.11.005
  17. Leblouba, M., Junaid, M. T., Barakat, S., Altoubat, S., Maalej, M. (2017). Shear buckling and stress distribution in trapezoidal web corrugated steel beams. Thin-Walled Structures, 113, 13–26. doi: 10.1016/j.tws.2017.01.002
  18. Eurocode 3 EN 1993-1-5: Design of steel Structures. Part 1.5. Plated Structural Elements (2004). Brussels: Management Centre, 91.
  19. Lukin, A. A., Kholopov, I. S., Alpatov, V. Y., Soloviev, A. V. (2016). Beams with Corrugated Web: Calculation Peculiarities of Bending Torsion Analysis. Procedia Engineering, 153, 414–418. doi: 10.1016/j.proeng.2016.08.143
  20. Vlasov, V. Z. (1959). Tonkostennye uprugie sterzhni. Moscow: Fizmatlit, 568.
  21. Altufov, I. A. (1978). Osnovy rascheta na ustoychivost' uprugih sistem. Moscow: Mashinostroenie, 312.
  22. Timoshenko, S. P., Voynovskiy-Kriger, S. (1966). Plastinki i obolochki. Moscow: Nauka, 635.
  23. Timoshenko, S. P. (1967). Ustoychivost' sterzhney, plastin i obolochek. Moscow: Nauka, 984.
  24. Bubnov, I. G. (1953). Trudy po teorii plastin. Moscow: Gostekhizdat, 423.
  25. Vol'mir, A. S. (1956). Gibkie plastinki i obolochki. Moscow: Gostekhizdat, 419.
  26. Johansson, В., Maquoi, R., Sedlacek, G., Muller, C., Beg, D. (2007). Commentary and worked examples to EN 1993-1-5 "Plated structural elements". Luxembourg: Office for Official Publications of the European Communities, 228.
  27. Hoop, H. G. (2003). Literature study. Master thesis: Girders with corrugated webs. The Netherlands: Papendrecht, 48.
  28. Pasternak, H., Kubieniec, G. (2010). Plate girders with corrugated webs. Journal of Civil Engineering and Management, 16 (2), 166–171. doi: 10.3846/jcem.2010.17
  29. Nilov, A. A., Laznyuk, M. V., Martinyuk, A. Ya. (2008). K voprosu o normativnom obespechenii proektirovaniya stal'nyh dvutavrov s gofrirovannymi stenkami. Zbir. nauk. prats UkrNDIproektstalkonstruktsii im. V. M. Shymanovskoho, 1, 45–53.
  30. Pichuhin, S. F., Chychulina, K. V. (2009). Eksperymentalni doslidzhennia balok z profilovanoiu stinkoiu. Visnyk DonNABA, 78, 161–165.

Downloads

Published

2017-10-24

How to Cite

Chichulin, V., & Chichulina, K. (2017). Deriving a function of the bending axis of a profiled wall in the form of orthotropic plate. Eastern-European Journal of Enterprise Technologies, 5(7 (89), 30–37. https://doi.org/10.15587/1729-4061.2017.109687

Issue

Section

Applied mechanics